66 research outputs found

    Synchronous Microwave Ablation Combined With Cisplatin Intratumoral Chemotherapy for Large Non-Small Cell Lung Cancer

    Get PDF
    BackgroundMicrowave ablation (MWA) and intratumoral chemotherapy (ITC) are useful for treating tumors in animal models; however, their clinical use in patients with large non−small cell lung cancer (NSCLC) remains unknown. This retrospective study aimed to evaluate preliminary outcomes of MWA + ITC for large NSCLC.MethodsFrom November 2015 to April 2020, a total of 44 NSCLC patients with a mean lesion diameter of 6.1 ± 1.5 cm were enrolled and underwent synchronous MWA + ITC procedures. The primary endpoint was local progression-free survival (LPFS); secondary endpoints were progression-free survival (PFS), complications, overall survival (OS), and associated prognostic factors.ResultsThe median follow-up time was 19.0 months. At the 1-month CT scan, complete tumor ablation was observed in 47.7% of cases. Median LPFS was 12.1 months; 1-, 2-, and 3-year LPFS rates were 51.2%, 27.9%, and 13.6%, respectively. A shorter LPFS was significantly associated with large lesions (HR 1.23, 95% CI 1.02–1.49; p = 0.032). Median PFS was 8.1 months; 1-, 2-, and 3-year PFS rates were 29.5%, 18.2%, and 9.1%, respectively. LPFS was significantly superior to PFS (p = 0.046). Median OS was 18.8 months. The 1-, 2-, 3-, and 5-year OS rates were 65.9%, 43.2%, 26.4%, and 10.0%, respectively. In univariate comparisons, high performance status (PS) score, smoking, and larger lesions were significantly correlated with poor survival. In multivariate analysis, advanced age, higher PS score, higher stage, larger lesion, and prior systematic treatment were independent prognostic factors for shorter OS. Adverse events were well tolerated and all patients recovered after appropriate intervention.ConclusionsMWA + ITC is a safe and effective new modality of local treatment for large NSCLC and can significantly prolong LPFS

    Lower Blood Calcium Associates with Unfavorable Prognosis and Predicts for Bone Metastasis in NSCLC

    Get PDF
    Ionized calcium was involved in various cellular signal pathways,and regulates many cellular processes, including those relevant to tumorigenesis. We hypothesis that imbalance of calcium homeostasis is correlated with development of lung carcinomas. We collected the clinical data of 1084 patients with non small cell lung cancer (NSCLC) treated in Shandong Provincial Hospital, Shandong University. Logistic regression was used to determine the association between calcium levels and clinical characteristics, and COX regression and Kaplan-Meier model were applied to analyze risk factors on overall survival. Blood electrolytes were tested before treatment; and nearly 16% patients with NSCLC were complained with decreased blood calcium, which is more frequent than that in other electrolytes. Further, Multivariate logistic regression analysis disclosed that there were significant correlation between blood calcium decrease and moderate and poor differentiation (P = 0.012, OR = 1.926 (1.203–4.219)), squamous cell carcinoma (P = 0.024, OR = 1.968(1.094–3.540)), and bone metastasis (P = 0.032, OR = 0.396(0.235–0.669)). In multivariate COX regression analysis, advanced lymph node stage and decreased blood calcium were significantly and independent, unfavorable prognostic factors (P<0.001). Finally, the Kaplan-Meier Survival curve revealed that blood calcium decrease was associated with shorter survival (Log-rank; χ2 = 26.172,P<0.001). Our finding indicates that lower blood calcium levels are associated with a higher risk of unfavorable prognosis and bone metastasis of NSCLC

    2H Solid-State NMR Analysis of the Dynamics and Organization of Water in Hydrated Chitosan

    No full text
    Understanding water–biopolymer interactions, which strongly affect the function and properties of biopolymer-based tissue engineering and drug delivery materials, remains a challenge. Chitosan, which is an important biopolymer for the construction of artificial tissue grafts and for drug delivery, has attracted extensive attention in recent decades, where neutralization with an alkali solution can substantially enhance the final properties of chitosan films cast from an acidic solution. In this work, to elucidate the effect of water on the properties of chitosan films, we investigated the dynamics and different states of water in non-neutralized (CTS-A) and neutralized (CTS-N) hydrated chitosan by mobility selective variable-temperature (VT) 2H solid-state NMR spectroscopy. Four distinct types of water exist in all of the samples with regards to dynamic behavior. First, non-freezable, rigid and strongly bound water was found in the crystalline domain at low temperatures. The second component consists of weakly bound water, which is highly mobile and exhibits isotropic motion, even below 260 K. Another type of water undergoes well-defined 180° flips around their bisector axis. Moreover, free water is also present in the films. For the CTS-A sample in particular, another special water species were bounded to acetic acid molecules via strong hydrogen bonding. In the case of CTS-N, the onset of motions of the weakly bound water molecules at 260 K was revealed by 2H-NMR spectroscopy. This water is not crystalline, even below 260 K, which is also the major contribution to the flexibility of chitosan chains and thus toughness of materials. By contrast, such motion was not observed in CTS-A. On the basis of the 2H solid-state NMR results, it is concluded that the unique toughness of CTS-N mainly originates from the weakly bound water as well as the interactions between water and the chitosan chains

    Albumin and Neutrophil Combined Prognostic Grade as a New Prognostic Factor in Non-Small Cell Lung Cancer: Results from a Large Consecutive Cohort.

    No full text
    It has been reported nutritional status and systemic inflammation were associated with the outcome of patients with malignancies. However, the prognostic value of combination of them was really scarce, especially in non-small cell lung cancer (NSCLC). In order to find a more simple and efficient predictor, we hypothesized that pretreatment albumin and neutrophil combined prognostic grade (ANPG) could offer an improved prognostic ability in NSCLC patients.We collected pretreatment albumin and neutrophil, clinicopathological, treatment and follow-up data of 1033 consecutive NSCLC patients treated between 2006 and 2011 in this retrospective study. The ANPG was calculated according to pretreatment albumin and neutrophil levels dichotomized by the optimal cut-off values, the quartile values and the clinical reference values. Kaplan-Meier (K-M) curves and Cox proportional regression were used for survival analyses. All the data was analyzed by SPSS 20.0.According to optimal cut-off values and quartile values, significant differences were found in different pretreatment albumin, neutrophil levels and ANPG from the K-M curve (all p<0.05). Univariate analyses and multivariate analyses disclosed ANPG was a more sensitive independent predictor for both overall survival (OS) and progression free survival (PFS) than either albumin level or neutrophil level (HRs were higher for ANPG). As for clinical reference values, no significant difference of pretreatment albumin levels was found in K-M curve and univariate analyses. All three indexes lost their significance in multivariate analyses.Higher ANPG predicts worse OS and PFS in NSCLC patients independently, and it is more sensitive than hypoalbuminaemia and neutrophilia. It might be used as a reliable, convenient and more sensitive predictor to assist the identification of patients with poor prognosis and be a hierarchical factor in the future NSCLC clinical trials

    Exosomal miR-133a-3p promotes the growth and metastasis of lung cancer cells following incomplete microwave ablation

    No full text
    AbstractPurpose Exosomal miRNAs play key roles in various biological processes such as cell proliferation, angiogenesis, migration and invasion. We explored whether exosomal miRNAs can promote local recurrence (LR) of lung tumors following incomplete microwave ablation (MWA) therapy.Methods Exosomal miRNA profiles before and after incomplete MWA in lung cancer (LC) patients with LR (n = 3) were sequenced and compared. The differentially expressed miRNAs of interest were validated in clinical samples (n = 10) and MWA-treated cells using RT-qPCR analysis. Target genes of the miRNAs were predicted and validated. The biological functions of miRNAs in proliferation, angiogenesis and metastasis of A549 cells were evaluated in vitro and in vivo.Results A total of 270 miRNAs (243 upregulated and 27 downregulated) were differentially expressed after incomplete MWA in patients with local recurrence. Upregulation of miR-133a-3p after MWA was validated in the cells and clinical samples. Cell functional experiments suggested that miR-133a-3p overexpression derived from serum exosomes increased cell viability, migration and invasion ability, tube formation activity and proliferation of A549 cells. Sirtuin 1 (SIRT1) was identified as a target gene for miR-133a-3p. Moreover, miR-133a-3p delivered by exosomes significantly promoted tumor growth, paralleled by reduced SIRT1 expression in a subcutaneous tumorigenesis animal model and increased the number of lung nodules by tail vein metastasis in vivo.Conclusion Exosomal miR-133a-3p overexpression promoted tumor growth and metastasis following MWA and could be a promising biomarker for LC recurrence after incomplete MWA

    Research Progress on Adsorption and Separation of Petroleum Hydrocarbon Molecules by Porous Materials

    No full text
    Petroleum is an indispensable chemical product in industrial production and daily life. The hydrocarbon molecules in petroleum are important raw materials in the organic chemical industry. The hydrocarbons currently used in industry are usually obtained by fractional distillation of petroleum, which not only consumes more energy, but has poor separation selectivity for some hydrocarbons. Adsorption separation technology has many advantages such as energy saving and high efficiency. It can adsorb and separate hydrocarbon molecules in petroleum with low energy consumption and high selectivity under mild conditions. In this paper, the research progress of adsorption and separation of hydrocarbon molecules in petroleum is reviewed, and various new catalysts and the rules of adsorption and desorption are analyzed
    • …
    corecore