29 research outputs found
Tunable topological phase transition in soft Rayleigh beam system with imperfect interfaces
Acoustic metamaterials, particularly the topological insulators, exhibit
exceptional wave characteristics that have sparked considerable research
interest. The study of imperfect interfaces affect is of significant importance
for the modeling of wave propagation behavior in topological insulators. This
paper models a soft Rayleigh beam system with imperfect interfaces, and
investigates its topological phase transition process tuned by mechanical
loadings. The model reveals that the topological phase transition process can
be observed by modifying the distance between imperfect interfaces in the
system. When a uniaxial stretch is applied, the topological phase transition
points for longitudinal waves decrease within a limited frequency range, while
they increase within a larger frequency scope for transverse waves. Enhancing
the rigidity of the imperfect interfaces also enables shifting of the
topological phase transition point within a broader frequency range for
longitudinal waves and a confined range for transverse waves. The transition of
topologically protected interface modes in the transmission performance of a
twenty-cell system is verified, which include altering frequencies, switching
from interface mode to edge mode. Overall, this study provides a new approach
and guideline for controlling topological phase transition in composite and
soft phononic crystal systems.Comment: 39 pages,8 figure
The uppermost monoterpenes improving Cinnamomum camphora thermotolerance by serving signaling functions
Terpenes serve important functions in enhancing plant thermotolerance. Cinnamomum camphora mainly has eucalyptol (EuL), camphor (CmR), linalool (LnL) and borneol (BeL) chemotypes basing on the uppermost monoterpenes. To reveal the thermotolerance mechanisms of these uppermost monoterpenes (eucalyptol, camphor, linalool, and borneol) in C. camphora, we surveyed the ROS metabolism and photosynthesis in the 4 chemotypes fumigated with the corresponding uppermost monoterpene after fosmidomycin (Fos) inhibiting monoterpene synthesis under high temperature at 38°C (Fos+38°C+monoterpene), and investigated the related gene expression in EuL and CmR. Meanwhile, the thermotolerance differences among the 4 uppermost monoterpenes were analyzed. In contrast to normal temperature (28°C), ROS levels and antioxidant enzyme activities in the 4 chemotypes increased under 38°C, and further increased in the treatment with Fos inhibiting monoterpene synthesis at 38°C (Fos+38°C), which may be caused by the alterations in expression of the genes related with non-enzymatic and enzymatic antioxidant formation according to the analyses in EuL and CmR. Compared with Fos+38°C treatment, Fos+38°C+monoterpene treatments lowered ROS levels and antioxidant enzyme activities for the increased non-enzymatic antioxidant gene expression and decreased enzymatic antioxidant gene expression, respectively. High temperature at 38°C reduced the chlorophyll and carotenoid content as well as photosynthetic abilities, which may result from the declined expression of the genes associated with photosynthetic pigment biosynthesis, light reaction, and carbon fixation. Fos+38°C treatment aggravated the reduction. In contrast to Fos+38°C treatment, Fos+38°C+monoterpene treatments increased photosynthetic pigment content and improved photosynthetic abilities by up-regulating related gene expression. Among the 4 uppermost monoterpenes, camphor showed strong abilities in lowering ROS and maintaining photosynthesis, while eucalyptol showed weak abilities. This was consistent with the recovery effects of the gene expression in the treatments with camphor and eucalyptol fumigation. Therefore, the uppermost monoterpenes can enhance C. camphora thermotolerance as signaling molecules, and may have differences in the signaling functions
Development of main functional modules for MVB and its application in rail transit
In this work, multi-function vehicle bus (MVB) controller-based Field Programmable Gate Array (FPGA) and MVB manager based on the real-time multitasking operating system were explored and developed. The function of the MVB controller data link layer was realised by using FPGA. The embedded real-time multitasking operating system uCOS-II was applied to the development of MVB manager’s processing data, device state management, message data and bus management function. The network consistency test was performed to validate data communication of MVB link layer control protocol and the management function of MVB manager; the equipment was shown to be compatible with each other and met the requirements of IEC61375-1
Propagation Characteristics of Circular Airy Vortex Beams in a Uniaxial Crystal along the Optical Axis
Circular airy vortex beams (CAVBs) have attracted much attention due to their “abruptly autofocusing” effect, phase singularity, and their potential applications in optical micromanipulation, communication, etc. In this paper, we numerically investigated the propagation properties of circular airy beams (CABs) imposed with different optical vortices (OVs) along the optical axis of a uniaxial crystal for the first time. Like other common beams, a left-hand circular polarized (LHCP) CAVB, propagating along the optical axis in a uniaxial crystal, can excite a right-hand circular polarized (RHCP) component superimposed with an on-axis vortex of topological charge (TC) number of 2. When the incident beam is an LHCP CAB imposed with an on-axis vortex of TC number of l = 1, both of the two components have an axisymmetric intensity distribution during propagation and form hollow beams near the focal plane because of the phase singularity. The phase pattern shows that the LHCP component carries an on-axis vortex of TC number of l = 1, while the RHCP component carries an on-axis vortex of TC number of l = 3. With a larger TC number (l = 3), the RHCP component has a larger hollow region in the focal plane compared to the LHCP component. We also studied cases of CABs imposed with one and two off-axis OVs. The off-axis OV makes the CAVB’s profile remain asymmetric throughout the propagation. As the propagation distance increases, the off-axis OVs move near the center of the beam and overlap, resulting in a special intensity and phase distribution near the focal plane
Experience and lessons learned from blunt cerebrovascular injuries: A case report
Background: Blunt cerebrovascular injuries are rare and serious complications of trauma that can lead to cerebral vascular dissection or aneurysm. Improving awareness of blunt cerebrovascular injuries and using computed tomography angiography to pre-screen patients at high risk is recommended by current guidelines to prevent the occurrence of ischemic stroke complications. Case description: A 32-year-old male patient was admitted to the hospital following neck trauma accompanied by stroke symptoms. Imaging revealed intimal injury of the right common carotid artery and acute cerebral infarction. After an endarterectomy and repair, the vascular lumen obstruction resolved, blood flow was restored, and the patient's condition stabilized. Conclusion: Blunt cerebrovascular injury has been seriously neglected in clinical practice. Delayed or under-diagnosis of blunt cerebrovascular injury can result large strokes. Standardized treatment protocols, which include the screening and grading of blunt cerebrovascular injury, may reduce the risk of permanent neurological dysfunction, and even death, in patients
Analysis and Experiment of Laser Wireless Power Transmission Based on Photovoltaic Panel
A photovoltaic panels is a device used for converting solar and other energy into electrical energy. In laser wireless power transmission, there is a problem that the conversion efficiency of the photovoltaic panel is not as high as that of a single photovoltaic cell, and the output power is not as large as expected. This is not conducive to the popularization and use of wireless power transmission via laser. It is important to find out why the output power of the photovoltaic panel irradiated by lasers is not high. According to the laser intensity distribution equation, it is deduced that the laser in a very small area has an equivalent uniformity intensity distribution through the comparative calculation of the light intensity of two adjacent points. Then, the input non-uniform laser can be broken down into many equivalent uniform small lasers with different light intensity values. Based on this theory, the photovoltaic array model under laser was established, and it was simulated by MATLAB/Simulink. The simulation results reveal that the greater the difference between the light intensity values of these small spots, that is to say, the more non-uniform the laser, the lower the output power of the photovoltaic module illuminated by it. A multi-wavelength experimental platform was built, and comparative experiments of laser wireless power transmission were carried out using three kinds of lasers: 808, 532, and 1030 nm. The experimental result was in good agreement with the simulation result. The above results show that the deduced theory and the model based on it are correct
Design and Fabrication of Large-Size Powersphere for Wireless Energy Transmission via Laser
The powersphere is a device used for maximizing the conversion of light in wireless energy transmission via laser. It is a spherical structure made up of thousands of photovoltaic cells. Due to the large dimensions and existence of many holes in the spherical surface, there are some drawbacks in machining, such as limited movement space of the machines, long cycle, low precision, and high cost. In this context, with a powersphere irradiated by the laser as the model, the principle of powersphere is deduced theoretically. It is proven that the illuminance value at any position on the inner wall of the powersphere is equal, and the calculation formula of this value is derived. Based on this theory and the comparative analysis of processing methods and the results of processing experiments, the structure of the powersphere is designed. The experimental processing of the powersphere is carried out by selecting the welding method. Finally, two hemispherical powersphere frames are processed, which are connected by screws to form a ball frame for the installation of photovoltaic cells. The results show that the improved design and fabricating method can process the powersphere quickly, accurately, and economically. A comparative experiment of powersphere and photovoltaic panel was carried out. The experimental results show that the powersphere has the function of light uniformity and repeated use of laser. So, the designed and processed powersphere is consistent with the theoretical analysis
Experimentation and Analysis of Intra-Cavity Beam-Splitting Method to Enhance the Uniformity of Light in the Powersphere
The powersphere is a spherical enclosed receiver composed of multiple photovoltaic cells. It serves as a replacement for traditional photovoltaic panels in laser wireless power transmission systems for optoelectronic conversion. The ideal powersphere aims to achieve a uniform distribution of light within the cavity through infinite reflections, reducing energy losses in the circuit. However, due to the high absorption rate of the photovoltaic cells, the direct irradiation area on the inner surface of the powersphere exhibits a significantly higher light intensity than the reflected area, resulting in a suboptimal level of light uniformity and certain circuit losses. To address the aforementioned issues, a method of intra-cavity beam splitting in the powersphere is proposed. This solution aims to increase the area of direct illumination and reduce the intensity difference between direct and reflected lights, thereby improving the light uniformity on the inner surface of the powersphere. Utilizing the transformation matrix of Gaussian beams, the q parameters for each optical path with beam splitting were calculated, and the equality of corresponding q values was demonstrated. Further, based on the q parameter expression for the electric field of Gaussian beams, the intensities for each optical path were calculated, and it was demonstrated that their values are equal. Additionally, an optical software was utilized to establish a model for intra-cavity beam splitting in the powersphere. Based on this model, a beam-splitting system was designed using a semi-transparent and semi-reflective lens as the core component. The light uniformity performance of the proposed system was analyzed through simulations. To further validate the effectiveness of the calculations, design, and simulations, multiple lenses were employed to construct the beam-splitting system. An experimental platform was set up, consisting of a semiconductor laser, monocrystalline silicon photovoltaic cells, beam expander, Fresnel lens, beam-splitting system, and powersphere. An experimental verification was conducted, and the results aligned with the theoretical calculations and simulated outcomes. The above theory, simulations, and experiments demonstrate that the intra-cavity beam-splitting method effectively enhances the optical uniformity within the powersphere
Electromechanical model-based adaptive control of multilayered dielectric elastomer bending actuator
Dielectric elastomer (DE) possesses attributes such as large deformation and fast response. As a typical DE actuating structure, the multilayered DE bending actuator (MDEBA) is lightweight and can actuate in relatively low voltage without a rigid frame and pre-stretch. These attributes arouse wide research interest in the MDEBA on the application of soft robots. However, due to its large deformation and nonlinear electromechanical dynamics, the control of MDEBA remains highly challenged. Considering the large bending deformation and gravity effect, we develop an electromechanical dynamic model-based control strategy, which can adaptively compensate for the parameter uncertainties during the actuation of MDEBA. Experimental results validate that this control strategy provides highly enhanced control performance compared to the proportional integral derivative (PID) controller. The electromechanical modeling method and dynamic control strategy may guide the further study of MDEBA, soft robots, and flexible devices
Culture of patient-derived multicellular clusters in suspended hydrogel capsules for pre-clinical personalized drug screening
A personalized medication regimen provides precise treatment for an individual and can be guided by pre-clinical drug screening. The economical and high-efficiency simulation of the liver tumor microenvironment (TME) in a drug-screening model has high value yet challenging to accomplish. Herein, we propose a simulation of the liver TME with suspended alginate-gelatin hydrogel capsules encapsulating patient-derived liver tumor multicellular clusters, and the culture of patient-derived tumor organoids(PDTOs) for personalized pre-clinical drug screening. The hydrogel capsule offers a 3D matrix environment with mechanical and biological properties similar to those of the liver in vivo. As a result, 18 of the 28 patient-derived multicellular clusters were successfully cultured as PDTOs. These PDTOs, along with hepatocyte growth factor (HGF) of non-cellular components, preserve stromal cells, including cancer-associated fibroblasts (CAFs) and vascular endothelial cells (VECs). They also maintain stable expression of molecular markers and tumor heterogeneity similar to those of the original liver tumors. Drugs, including cabazitaxel, oxaliplatin, and sorafenib, were tested in PDTOs. The sensitivity of PDTOs to these drugs differs between individuals. The sensitivity of one PDTO to oxaliplatin was validated using magnetic resonance imaging (MRI) and biochemical tests after oxaliplatin clinical treatment of the corresponding patient. Therefore, this approach is promising for economical, accurate, and high-throughput drug screening for personalized treatment