25 research outputs found

    Thermodynamic Stabilities of Perfect and Vacancy-Defected Li2 TiO3 (001) Surfaces From First-Principles Analyses

    Get PDF
    Lithium titanate (Li2TiO3) is an attractive ceramic material for various industrial applications, particularly as one of the most promising breeder blanket materials in future nuclear-fusion reactors. Previously reported studies mainly focus on sintered polycrystalline samples of Li2TiO3. Surface structure of the single-crystal form is rarely reported, although the information of surface structures and stabilities can be critical for further understanding the surface-associated processes. In this work, we perform extensive first-principles density-functional-theory (DFT) calculations to obtain the surface energies of Li2TiO3 (001) with different surface terminations. For four perfect (defect-free) Li-, O-, or LiTi-terminated (001) surfaces, Li- or O-terminated (001) surfaces can be most stable in limited chemical-potential ranges corresponding to certain experimental conditions, while a LiTi-terminated (001) surface is always unfavorable relative to Li or O terminations. By calculating the total energies of various possible configurations with surface vacancies, we determine the energetically most favorable vacancy-defected surface terminations. From the corresponding ternary phase diagram, we analyze the stability of a specific surface termination with vacancies as well as the possible formation of oxides. Our stability analysis together with DFT-simulated STM images reveals that a 1/3-monolayer-Li-terminated surface most likely corresponds to the ordered hexagonal-like pattern observed previously in STM experiments. For a 1/2-monolayer-Li-terminated surface, the most stable surface structure from our DFT calculations contrasts with previous results from an empirical-potential model

    Simultaneous Surgical Treatment of Non-small Cell Lung Cancer and Off-pump Coronary Artery bypass Grafting

    No full text
    Background and objective Patients with resectable lung cancer and unstable coronary heart disease are at high risks of postoperative death or severe cardioovascular complications. They always pose a therapeutic challenge for thoracic surgeons. The aim of this study is to summarize clinical experience of radical lung resection for cancer with simultaneous off-pump coronary artery bypass grafting. Methods Seven patients who suffered from non small cell lung cancer concomitant arrhythmia, unstable angina and recent history of myocardial infarction had been carried out simultaneous radical lobectomy and off-pump coronary artery bypass grafting. Preoperative 6 patients had been confirmed to be misfit for either coronary arterioplasty or stent implanting by performing the coronary angiography. One patient had undergone stenting before the lung cancer had been diagnosed. The procedure through median sternotomy performed offpump coronary artery bypass grafting preceded lobectomy and mediastinal lymphadenectomy. Left upper lobectomy was performed in 2 patients, right upper lobectomy was performed in 1 patient, right upper and middle lobectomy was performed in one patient, video thoracoscopy assisted left lower lobectomy was performed in 1 patient, right lower lobectomy was performed in 2 patients. Results There was no death of patient in hospital, however, a patient died 7th month postoperatively because of cerebrovascular accident. Atrial fibrillation was observed postoperatively in 1 patient. Five patients were diagnosed as squamous cell lung cancer by pathology examination, and 2 patients were adenocarcinoma. Follow-up ranging from 2 months to 59 monthswas available for these patients postoperatively. None of the patients showed evidence of angina and myocardial infarction after surgery. In one patient, who underwent left superior lobectomy, local recurrence was found at 19 months after surgery. Conclusion In selected patients, simultaneous radical lung resection and off-pump coronary artery bypass grafting is a safe and effective treatment when unstable coronary heart disease and lung cancer coexist. The therapeutic strategy may decrease the incidence of postoperative complications

    A Comparative Study of Vitrectomy Combined with Internal Limiting Membrane Peeling for the Treatment of Idiopathic Macular Hole with Air or C3F8 Intraocular Tamponade

    No full text
    Purpose. The treatment of idiopathic macular holes has been basically modeled, and vitreoretinal surgery is recognized as an effective treatment. However, the postoperative tamponade of gas will still make the patient uncomfortable and may have related complications. The purpose of this study is to investigate whether air as an intraocular tamponade is equivalent to gas and what advantages may exist. Methods. A retrospective study was performed in one hundred and ninety-eight patients from 2013 to 2017; 112 received gas tamponade and 86 received air tamponade. After receiving retinal surgery, the outcomes of best corrected visual acuity, intraocular pressure, slit lamp examination, fundus examination, and imaging of the macula by spectral-domain optical coherence tomography were analyzed. Results. Before operation, there was no statistically significant difference in age, sex, macular hole diameter, or visual acuity between groups. The median follow-up period for the C3F8 group was 26 months, and the median follow-up for the air group was 25 months. After the operation, the best corrected visual acuity and macular hole closure rate were not significantly different between the two groups. The face-down time after the operation, the incidence of lens opacity on the third postoperative day, the intraocular pressure on the third postoperative day, and the operation time were significantly different between the two groups. Conclusions. In idiopathic macular hole surgery, the effect of air as an intraocular tamponade material can be similar to that of C3F8 but has fewer complications. In particular, it is a better choice for patients for whom the face-down position is not suitable

    Spatial–Temporal Evolution and Driving Factors of Habitat Quality in <i>Malus sieversii</i> Forest Areas in the Western Tianshan Mountain’s Watersheds

    No full text
    The landscape pattern of Xinjiang’s wild apple forest (Malus sieversii) area has undergone substantial change due to human activity disruption and frequent natural catastrophes. This change has a significant influence on the biodiversity and stability of the ecosystem. This study aimed to evaluate the spatial and temporal evolution in habitat quality and landscape pattern changes to analyze the underlying factors affecting habitat quality in the Malus sieversii forest (MF) area in the Mohe watershed of the western Tianshan Mountains. Here, we applied the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, using four periods of remote sensing images of 1964, 1980, 2000, and 2017 as data sources, and analyzed the trend of landscape pattern changes in the MF area. The results show that (1) from 1964 to 2017, the study area was greatly affected by anthropogenic disturbance and climate change. Each landscape index indicates that the fragmentation of the whole study area has increased, the stability of the ecosystem has weakened, and the habitat quality is somewhat in jeopardy. (2) Analyzed in terms of spatial and temporal characteristics, the habitat quality of the whole study area decreased from 1964 to 2017. Among them, the low habitat value is mainly distributed in the north and northeast, the central part of the study area shows scattered low-habitat-value areas, and in the high-altitude area in the south, the ecosystem is more stable. (3) Since the northern region is dominated by cultivated land patches and residential building land patches, the habitat quality of the stressed zone deteriorates the larger its maximum patch area. The habitat quality of the region under stress worsens the larger its maximum patch size. In the area dominated by MF, the larger the area of MF patches, the higher the ecological service value. The study may be helpful for comprehending how the dynamics of landscape patterns affect biodiversity. It may also offer a scientific foundation for improving regional natural environments and effective decision-making support for local governments in the areas of landscape design and biodiversity preservation

    Distribution of Grazing Paths and Their Influence on Mountain Vegetation in the Traditional Grazing Area of the Tien-Shan Mountains

    No full text
    In the Tien-Shan Mountains, Ili Prefecture, Xinjiang, China, the livestock industry has experienced rapid growth in recent decades. However, this expansion has led to increased overgrazing behavior, resulting in the proliferation of grazing paths and a decline in vegetation cover. These factors are considered the main causes of vegetation degradation in the region. To investigate this issue, we conducted a study utilizing unmanned aerial vehicle imagery in the Zollersay Mountains of Ili to examine the distribution of grazing paths and their effects on mountain vegetation, including grassland and Malus sieversii. The results of our study revealed that grazing paths in the area exhibited various formations, including parallel, oblique intersection, and grid. On the hilltop, the grazing paths were not only shorter but also wider, whereas on the hillside, they were denser, indicating a higher concentration of livestock trampling events. It was found that grazing path density played a pivotal role in grassland degradation, with a negative correlation observed between grazing path density and indicators such as the grassland quality index and grass vegetation coverage. As grazing path density increased, the damage inflicted on Malus sieversii by livestock also intensified. However, as the trees grow older, their height surpasses the feeding range of livestock, resulting in reduced grazing impact. The findings of our study carry significant implications for developing scientifically informed livestock policies and promoting the conservation of wild fruit forests

    Thermodynamic Stabilities of Perfect and Vacancy-Defected Li2 TiO3 (001) Surfaces From First-Principles Analyses

    No full text
    Lithium titanate (Li2TiO3) is an attractive ceramic material for various industrial applications, particularly as one of the most promising breeder blanket materials in future nuclear-fusion reactors. Previously reported studies mainly focus on sintered polycrystalline samples of Li2TiO3. Surface structure of the single-crystal form is rarely reported, although the information of surface structures and stabilities can be critical for further understanding the surface-associated processes. In this work, we perform extensive first-principles density-functional-theory (DFT) calculations to obtain the surface energies of Li2TiO3 (001) with different surface terminations. For four perfect (defect-free) Li-, O-, or LiTi-terminated (001) surfaces, Li- or O-terminated (001) surfaces can be most stable in limited chemical-potential ranges corresponding to certain experimental conditions, while a LiTi-terminated (001) surface is always unfavorable relative to Li or O terminations. By calculating the total energies of various possible configurations with surface vacancies, we determine the energetically most favorable vacancy-defected surface terminations. From the corresponding ternary phase diagram, we analyze the stability of a specific surface termination with vacancies as well as the possible formation of oxides. Our stability analysis together with DFT-simulated STM images reveals that a 1/3-monolayer-Li-terminated surface most likely corresponds to the ordered hexagonal-like pattern observed previously in STM experiments. For a 1/2-monolayer-Li-terminated surface, the most stable surface structure from our DFT calculations contrasts with previous results from an empirical-potential model.</p

    Primary lung clear cell carcinoma: one case report

    No full text

    Schisandra chinensis (Turcz.) Baill. polysaccharide inhibits influenza A virus in vitro and in vivo

    No full text
    Influenza virus is prone to seasonal spread and widespread outbreaks, which pose important challenges to public health security. Therefore, it is important to effectively prevent and treat influenza virus infection. Schisandra polysaccharide (SPJ) is a polysaccharide derived from the fruit of Schisandra chinensis (Turcz.) Baill. In this study, we evaluated the antiviral activity of SPJ in vitro and in vivo, especially against influenza A virus (IAV) infection. By analyzing SPJ structure and monosaccharide composition, the molecular weight of SPJ was determined to be 115.5 KD, and it is composed of galacturonic acid (89.4%), rhamnose (0.8%), galactose (4.4%), arabinose (3.8%), and glucose (1.7%). Immunofluorescence analysis showed that SPJ treatment reduced the positive rate of viral nucleoproteins in cells, indicating that the compound had an inhibitory effect on influenza virus replication. Furthermore, SPJ therapy improved the survival of infected mice. Lung virus titer assays indicated that SPJ treatment significantly reduced viral loading in the lung tissue of infected mice and alleviated the pathological damage caused by influenza virus infection. Moreover, SPJ reduced cytokine expression during influenza virus challenge. In conclusion, SPJ has anti‐influenza virus effects and may have potential as an anti‐influenza drug candidate in further clinical studies
    corecore