7 research outputs found

    Sensory neuronal phenotype in galanin receptor 2 knockout mice: focus on dorsal root ganglion neurone development and pain behaviour

    No full text
    Galanin is a 29-amino-acid peptide expressed in dorsal root ganglion (DRG) neurones and spinal dorsal horn neurones. It affects pain threshold and has developmental and trophic effects. Galanin acts at three G-protein-coupled receptors, galanin receptors (GalR1–3), each expressed in the DRGs as suggested by in situ hybridization and/or reverse transcriptase-polymerase chain reaction. The GalR2 knockout (–/–) mice permit studies on the contributions of this receptor subtype to the role of galanin at the spinal level. At 1 week after sciatic nerve transection (axotomy), there were 16–20% fewer neurones in intact and contralateral DRGs of –/– mice as compared with wild-type (WT) mice. In addition, a significant neurone loss (26% reduction) was found in the ipsilateral DRGs of WT mice, whereas no further neurone loss was seen in –/– mice. Expression of several peptides has been examined after axotomy, including galanin, neuropeptide Y and two of its receptors as well as substance P, and no significant differences were found between –/– and WT mice in either ipsi- or contralateral DRGs, respectively. After thermal injury and spinal nerve ligation, onset and duration of hyperalgesia in the injured paw were similar in GalR2–/– and WT animals. Recovery from spinal nerve ligation-caused allodynia had the same kinetics in –/– and WT animals. These data are in line with earlier observations from the peripheral and central nervous system, suggesting that galanin actions mediated by GalR2 subtype are of importance in neurodevelopment and neuroprotection

    Phenylalanine hydroxylase variants interact with the co‐chaperone DNAJC12

    Full text link
    DNAJC12, a type III member of the HSP40/DNAJ family, has been identified as the specific co‐chaperone of phenylalanine hydroxylase (PAH) and the other aromatic amino acid hydroxylases. DNAJ proteins work together with molecular chaperones of the HSP70 family to assist in proper folding and maintenance of intracellular stability of their clients. Autosomal recessive mutations in DNAJC12 were found to reduce PAH levels, leading to hyperphenylalaninemia (HPA) in patients without mutations in PAH. In this work, we investigated the interaction of normal wild‐type DNAJC12 with mutant PAH in cells expressing several PAH variants associated with HPA in humans, as well as in the Enu1/1 mouse model, homozygous for the V106A‐Pah variant, which leads to severe protein instability, accelerated PAH degradation and mild HPA. We found that mutant PAH exhibits increased ubiquitination, instability, and aggregation compared with normal PAH. In mouse liver lysates, we showed that DNAJC12 interacts with monoubiquitin‐tagged PAH. This form represented a major fraction of PAH in the Enu1/1 but was also present in liver of wild‐type PAH mice. Our results support a role of DNAJC12 in the processing of misfolded ubiquitinated PAH by the ubiquitin‐dependent proteasome/autophagy systems and add to the evidence that the DNAJ proteins are important players both for proper folding and degradation of their clients

    Secretagogin is expressed in sensory CGRP neurons and in spinal cord of mouse and complements other calcium-binding proteins, with a note on rat and human

    No full text
    Abstract Background Secretagogin (Scgn), a member of the EF-hand calcium-binding protein (CaBP) superfamily, has recently been found in subsets of developing and adult neurons. Here, we have analyzed the expression of Scgn in dorsal root ganglia (DRGs) and trigeminal ganglia (TGs), and in spinal cord of mouse at the mRNA and protein levels, and in comparison to the well-known CaBPs, calbindin D-28k, parvalbumin and calretinin. Rat DRGs, TGs and spinal cord, as well as human DRGs and spinal cord were used to reveal phylogenetic variations. Results We found Scgn mRNA expressed in mouse and human DRGs and in mouse ventral spinal cord. Our immunohistochemical data showed a complementary distribution of Scgn and the three CaBPs in mouse DRG neurons and spinal cord. Scgn was expressed in ~7% of all mouse DRG neuron profiles, mainly small ones and almost exclusively co-localized with calcitonin gene-related peptide (CGRP). This co-localization was also seen in human, but not in rat DRGs. Scgn could be detected in the mouse sciatic nerve and accumulated proximal to its constriction. In mouse spinal cord, Scgn-positive neuronal cell bodies and fibers were found in gray matter, especially in the dorsal horn, with particularly high concentrations of fibers in the superficial laminae, as well as in cell bodies in inner lamina II and in some other laminae. A dense Scgn-positive fiber network and some small cell bodies were also found in the superficial dorsal horn of humans. In the ventral horn, a small number of neurons were Scgn-positive in mouse but not rat, confirming mRNA distribution. Both in mouse and rat, a subset of TG neurons contained Scgn. Dorsal rhizotomy strongly reduced Scgn fiber staining in the dorsal horn. Peripheral axotomy did not clearly affect Scgn expression in DRGs, dorsal horn or ventral horn neurons in mouse. Conclusions Scgn is a CaBP expressed in a subpopulation of nociceptive DRG neurons and their processes in the dorsal horn of mouse, human and rat, the former two co-expressing CGRP, as well as in dorsal horn neurons in all three species. Functional implications of these findings include the cellular refinement of sensory information, in particular during the processing of pain.</p

    The Pah-R261Q mouse reveals oxidative stress associated with amyloid-like hepatic aggregation of mutant phenylalanine hydroxylase

    Full text link
    Phenylketonuria (PKU) is caused by autosomal recessive variants in phenylalanine hydroxylase (PAH), leading to systemic accumulation of L-phenylalanine (L-Phe) that may reach neurotoxic levels. A homozygous Pah-R261Q mouse, with a highly prevalent misfolding variant in humans, reveals the expected hepatic PAH activity decrease, systemic L-Phe increase, L-tyrosine and L-tryptophan decrease, and tetrahydrobiopterin-responsive hyperphenylalaninemia. Pah-R261Q mice also present unexpected traits, including altered lipid metabolism, reduction of liver tetrahydrobiopterin content, and a metabolic profile indicative of oxidative stress. Pah-R261Q hepatic tissue exhibits large ubiquitin-positive, amyloid-like oligomeric aggregates of mutant PAH that colocalize with selective autophagy markers. Together, these findings reveal that PKU, customarily considered a loss-of-function disorder, can also have toxic gain-of-function contribution from protein misfolding and aggregation. The proteostasis defect and concomitant oxidative stress may explain the prevalence of comorbid conditions in adult PKU patients, placing this mouse model in an advantageous position for the discovery of mutation-specific biomarkers and therapies

    Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human : expression, trafficking and possible role in pain

    Get PDF
    Background: Somatostatin (SST) and some of its receptor subtypes have been implicated in pain signaling at the spinal level. In this study we have investigated the role of SST and its sst2A receptor (sst2A) in dorsal root ganglia (DRGs) and spinal cord.Results: SST and sst2A protein and sst2 transcript were found in both mouse and human DRGs, sst2A-immunoreactive (IR) cell bodies and processes in lamina II in mouse and human spinal dorsal horn, and sst2A-IR nerve terminals in mouse skin. The receptor protein was associated with the cell membrane. Following peripheral nerve injury sst2A-like immunoreactivity (LI) was decreased, and SST-LI increased in DRGs. sst2A-LI accumulated on the proximal and, more strongly, on the distal side of a sciatic nerve ligation. Fluorescence-labeled SST administered to a hind paw was internalized and retrogradely transported, indicating that a SST-sst2A complex may represent a retrograde signal. Internalization of sst2A was seen in DRG neurons after systemic treatment with the sst2 agonist octreotide (Oct), and in dorsal horn and DRG neurons after intrathecal administration. Some DRG neurons co-expressed sst2A and the neuropeptide Y Y1 receptor on the cell membrane, and systemic Oct caused co-internalization, hypothetically a sign of receptor heterodimerization. Oct treatment attenuated the reduction of pain threshold in a neuropathic pain model, in parallel suppressing the activation of p38 MAPK in the DRGs. Conclusions: The findings highlight a significant and complex role of the SST system in pain signaling. The fact that the sst2A system is found also in human DRGs and spinal cord, suggests that sst2A may represent a potential pharmacologic target for treatment of neuropathic pain.16 page(s

    Somatostatin and its 2A Receptor in Dorsal Root Ganglia and Dorsal Horn of Mouse and Human: Expression, Trafficking and Possible Role in Pain

    No full text
    corecore