4 research outputs found

    In vivo characterization of target cells for acute elephant endotheliotropic herpesvirus (EEHV) infection in Asian elephants (Elephas maximus)

    No full text
    Elephant endotheliotropic herpesvirus-hemorrhagic disease (EEHV-HD) is a dangerous viral infectious disease in young Asian elephants. Despite hypotheses underlying pathogenesis of the disease, it is unclear which cell types the virus targets during acute or persistent infections. This study investigated the tissues and target cells permissive for EEHV infection and replication in vivo. Rabbit polyclonal antibodies against the non-structural proteins of EEHV, DNA polymerase (EEHV DNAPol), were generated and validated. These were used to examine EEHV infection and replication in various tissues of acute EEHV-HD cases and compared to an EEHV-negative control. The results indicated that viral antigens were distributed throughout the epithelia of the alimentary tract and salivary glands, endothelia and smooth muscle cells, and monocytic lineage cells of the EEHV-infected elephants. Moreover, EEHV DNAPol proteins were also found in the bone marrow cells of the EEHV1A-HD and EEHV1A/4-HD cases. This study demonstrated for the first time the target cells that favor in vivo EEHV replication during acute infection, providing a promising foundation for investigating EEHV propagation in vitro

    Comparative Efficacy of Chimeric Porcine Circovirus (PCV) Vaccines against Experimental Heterologous PCV2d Challenges

    No full text
    The objective of this study was to evaluate the efficacy of two multivalent commercial porcine circovirus (PCV) vaccines against heterologous PCV2d challenges. A total of 24 crossbred male pigs aged 26 days selected from a specific pathogen-free herd were randomly divided into four groups (six pigs per group) and assigned as follows: negative control (unvaccinated/sham-challenge), vaccinated with chimeric PCV1-2a vaccine (PCV1-2a/PCV2d-challenge), vaccinated with chimeric PCV1-2a-2b vaccine (PCV1-2a-2b/PCV2d-challenge) and positive control (unvaccinated/PCV2d-challenge). At 21 days after vaccination, the pigs were intranasally and intramuscularly inoculated with either sham or field isolates of PCV2d (PCV2d/149/TH/2020). After being challenged, blood samples were obtained weekly and analyzed for levels of PCV2d viremia, neutralizing antibodies, and IgG against PCV2. At 30 days post-challenge (DPC), the pigs were euthanized and then subjected to pathological evaluations and molecular analysis. The results indicated that pigs in the PCV1-2a-2b/PCV2d-challenge and the PCV1-2a/PCV2d-challenge groups possessed significantly greater levels of PCV2d-neutralizing antibody titer when compared with the positive control group. Moreover, pigs in the PCV1-2a-2b/PCV2d-challenge group exhibited a lower degree of severity in terms of gross lesion scores and lower levels of PCV2 viremia when compared with the positive control group. This study demonstrated that vaccinating pigs with either the PCV1-2a or PCV1-2a-2b chimeric vaccines elicits a potent immune response against PCV2d infection and reduces viremia after PCV2d inoculation in pigs

    Comparative Efficacy of Chimeric Porcine Circovirus (PCV) Vaccines against Experimental Heterologous PCV2d Challenges

    No full text
    The objective of this study was to evaluate the efficacy of two multivalent commercial porcine circovirus (PCV) vaccines against heterologous PCV2d challenges. A total of 24 crossbred male pigs aged 26 days selected from a specific pathogen-free herd were randomly divided into four groups (six pigs per group) and assigned as follows: negative control (unvaccinated/sham-challenge), vaccinated with chimeric PCV1-2a vaccine (PCV1-2a/PCV2d-challenge), vaccinated with chimeric PCV1-2a-2b vaccine (PCV1-2a-2b/PCV2d-challenge) and positive control (unvaccinated/PCV2d-challenge). At 21 days after vaccination, the pigs were intranasally and intramuscularly inoculated with either sham or field isolates of PCV2d (PCV2d/149/TH/2020). After being challenged, blood samples were obtained weekly and analyzed for levels of PCV2d viremia, neutralizing antibodies, and IgG against PCV2. At 30 days post-challenge (DPC), the pigs were euthanized and then subjected to pathological evaluations and molecular analysis. The results indicated that pigs in the PCV1-2a-2b/PCV2d-challenge and the PCV1-2a/PCV2d-challenge groups possessed significantly greater levels of PCV2d-neutralizing antibody titer when compared with the positive control group. Moreover, pigs in the PCV1-2a-2b/PCV2d-challenge group exhibited a lower degree of severity in terms of gross lesion scores and lower levels of PCV2 viremia when compared with the positive control group. This study demonstrated that vaccinating pigs with either the PCV1-2a or PCV1-2a-2b chimeric vaccines elicits a potent immune response against PCV2d infection and reduces viremia after PCV2d inoculation in pigs

    Attempt to Isolate Elephant Endotheliotropic Herpesvirus (EEHV) Using a Continuous Cell Culture System

    No full text
    Elephant endotheliotropic herpesvirus (EEHV) infection is known to cause acute fatal hemorrhagic disease, which has killed many young Asian elephants (Elephas maximus). Until recently, in vitro isolation and propagation of the virus have not been successful. This study aimed to isolate and propagate EEHV using continuous cell lines derived from human and/or animal origins. Human cell lines, including EA. hy926, A549, U937, RKO, SW620, HCT-116 and HT-29, and animal cell lines, including CT26.CL25 and sp2/0-Ag14, were investigated in this study. Mixed frozen tissue samples of the heart, lung, liver, spleen and kidney obtained from fatal EEHV1A- or EEHV4-infected cases were homogenized and used for cell inoculation. At 6, 24, 48 and 72 h post infection (hpi), EEHV-inoculated cells were observed for cytopathic effects (CPEs) or were assessed for EEHV infection by immunoperoxidase monolayer assay (IPMA) or quantitative PCR. The results were then compared to those of the mock-infected controls. Replication of EEHV in the tested cells was further determined by immunohistochemistry of cell pellets using anti-EEHV DNA polymerase antibodies or re-inoculated cells with supernatants obtained from passages 2 or 3 of the culture medium. The results reveal that no CPEs were observed in the tested cells, while immunolabeling for EEHV gB was observed in only U937 human myeloid leukemia cells. However, quantitation values of the EEHV terminase gene, as well as those of the EEHV gB or EEHV DNA polymerase proteins in U937 cells, gradually declined from passage 1 to passage 3. The findings of this study indicate that despite poor adaptation in U937 cells, this cell line displays promise and potential to be used for the isolation of EEHV1 and EEHV4 in vitro
    corecore