18 research outputs found

    Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths

    Get PDF
    This is the published version. Copyright American Geophysical Union[1] This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths

    Super-diffusion affected by hydrofacies mean length and source geometry in alluvial settings

    Get PDF
    Dissolved-phase contaminants experiencing enhanced diffusion (i.e., “super-diffusion”) with a pronounced leading plume edge can pose risk for groundwater quality. The drivers for complex super-diffusion in geological media, however, are not fully understood. This study investigates the impacts of hydrofacies’ mean lengths and the initial source geometry, motivated by a hydrofacies model built recently for the well-known MADE aquifer, on the spatial pattern of super-diffusion for two-dimensional alluvial aquifer systems. Monte Carlo simulations show that the bimodal velocity distribution, whose pattern is affected by the hydrofacies’ mean lengths, leads to super-diffusion of solutes with a bi-peak plume snapshot in alluvial settings where advection dominates transport. A larger longitudinal mean length (i.e., width) for hydrofacies with high hydraulic conductivity (K) enhances the connectivity of preferential pathways, resulting in higher values in the bimodal velocity distribution and an enhanced leading front for the bi-peak plume snapshot, while the opposite impact is identified for the hydrofacies’ vertical mean length (i.e., thickness) on the bi-peak super-diffusion. A multi-domain non-local transport model is then proposed, extending upon the concept of the distributed-order fractional derivative, to quantify the evolution of bi-peak super-diffusion due to differential advection and mobile-mobile mass exchange for solute particles moving in hydrofacies with distinct K. Results show that the bi-peak super-diffusion identified for the MADE site and perhaps the other similar aquifers, which is affected by the initial source geometry at an early stage and the thickness and width of high-K hydrofacies during all stages, can be quantified by the mobile-mobile fractional-derivative model. Porous medium dimensionality and stochastic model comparison are also discussed to further explore the nature of bi-peak super-diffusion in alluvial systems

    Global Distributions of Per- and Polyfluoroalkyl Substances in the Environment.

    Full text link
    A meta-analysis was conducted of published literature reporting concentrations of per- and polyfluoroalkyl substances (PFAS) in groundwater for sites distributed in 21 countries across the globe. Data for \u3e35 PFAS were aggregated from 96 reports published from 1999 to 2021. The final data set comprised approximately 21,000 data points after removal of time-series and duplicate samples as well as non-detects. The reported concentrations ranged over many orders of magnitude, from ng/L to mg/L levels. Distinct differences in concentration ranges were observed between sites located within or near sources versus those that are not. Perfluorooctanoic acid (PFOA), ranging from \u3c 0.03 ng/L to ~7 mg/L, and perfluorooctanesulfonic acid (PFOS), ranging from 0.01 ng/L to ~5 mg/L, were the two most reported PFAS. The highest PFAS concentration in groundwater was ~15 mg/L reported for the replacement-PFAS 6:2 fluorotelomer sulfonate (6:2 FTS). Maximum reported groundwater concentrations for PFOA and PFOS were compared to concentrations reported for soils, surface waters, marine waters, and precipitation. Soil concentrations are generally significantly higher than those reported for the other media. This accrues to soil being the primary entry point for PFAS release into the environment for many sites, as well as the generally significantly greater retention capacity of soil compared to the other media. The presence of PFAS has been reported for all media in all regions tested including areas that are far removed from specific PFAS sources. This gives rise to the existence of a background concentration of PFAS that must be accounted for in both regional and site-specific risk assessments. The presence of this background is a reflection of the large-scale use of PFAS, their general recalcitrance, and the action of long-range transport processes that distribute PFAS across regional and global scales. This ubiquitous distribution has the potential to significantly impact the quality and availability of water resources in many regions. In addition, the pervasive presence of PFAS in the environment engenders concerns for impacts to ecosystem and human health

    Statistical Analysis of Extreme Events in Precipitation, Stream Discharge, and Groundwater Head Fluctuation: Distribution, Memory, and Correlation

    Full text link
    Hydrological extremes in the water cycle can significantly affect surface water engineering design, and represents the high-impact response of surface water and groundwater systems to climate change. Statistical analysis of these extreme events provides a convenient way to interpret the nature of, and interaction between, components of the water cycle. This study applies three probability density functions (PDFs), Gumbel, stable, and stretched Gaussian distributions, to capture the distribution of extremes and the full-time series of storm properties (storm duration, intensity, total precipitation, and inter-storm period), stream discharge, lake stage, and groundwater head values observed in the Lake Tuscaloosa watershed, Alabama, USA. To quantify the potentially non-stationary statistics of hydrological extremes, the time-scale local Hurst exponent (TSLHE) was also calculated for the time series data recording both the surface and subsurface hydrological processes. First, results showed that storm duration was most closely related to groundwater recharge compared to the other storm properties, while intensity also had a close relationship with recharge. These relationships were likely due to the effects of oversaturation and overland flow in extreme total precipitation storms. Second, the surface water and groundwater series were persistent according to the TSLHE values, because they were relatively slow evolving systems, while storm properties were anti-persistent since they were rapidly evolving in time. Third, the stretched Gaussian distribution was the most effective PDF to capture the distribution of surface and subsurface hydrological extremes, since this distribution can capture the broad transition from a Gaussian distribution to a power-law one

    Remediation of NAPL Source Zones: Lessons Learned from Field Studies at Hill and Dover AFB

    Get PDF
    Innovative remediation studies were conducted between 1994 and 2004 at sites contaminated by nonaqueous phase liquids (NAPLs) at Hill and Dover AFB, and included technologies that mobilize, solubilize, and volatilize NAPL: air sparging (AS), surfactant flushing, cosolvent flooding, and flushing with a complexingsugar solution. The experiments proved that aggressive remedial efforts tailored to the contaminant can remove more than 90% of the NAPL-phase contaminant mass. Site-characterization methods were tested as part of these field efforts, including partitioning tracer tests, biotracer tests, and mass-flux measurements. A significant reduction in the groundwater contaminant mass flux was achieved despite incomplete removal of the source. The effectiveness of soil, groundwater, and tracer based characterization methods may be site and technology specific. Employing multiple methods can improve characterization. The studies elucidated the importance of smallscale heterogeneities on remediation effectiveness, and fomented research on enhanced-delivery methods. Most contaminant removal occurs in hydraulically accessible zones, and complete removal is limited by contaminant mass stored in inaccessible zones. These studies illustrated the importance of understanding the fluid dynamics and interfacial behavior of injected fluids on remediation design and implementation. The importance of understanding the dynamics of NAPL-mixture dissolution and removal was highlighted. The results from these studies helped researchers better understand what processes and scales are most important to include in mathematical models used for design and data analysis. Finally, the work at these sites emphasized the importance and feasibility of recycling and reusing chemical agents, and enabled the implementation and success of follow-on full-scale efforts
    corecore