81 research outputs found
Temperature dependence of nonlinear auto-oscillator linewidths: Application to spin-torque nano-oscillators
The temperature dependence of the generation linewidth for an auto-oscillator
with a nonlinear frequency shift is calculated. It is shown that the frequency
nonlinearity creates a finite correlation time, tau, for the phase
fluctuations. In the low-temperature limit in which the spectral linewidth is
smaller than 1/tau, the line shape is approximately Lorentzian and the
linewidth is linear in temperature. In the opposite high-temperature limit in
which the linewidth is larger than 1/tau, the nonlinearity leads to an apparent
"inhomogeneous broadening" of the line, which becomes Gaussian in shape and has
a square-root dependence on temperature. The results are illustrated for the
spin-torque nano-oscillator.Comment: 4 pages, 1 figur
Spectroscopy of the parametric magnons excited by 4-wave process
Using a Magnetic Resonace Force Microscope, we have performed ferromagnetic
resonance (FMR) spectroscopy on parametric magnons created by 4-wave process.
This is achieved by measuring the differential response to a small source
modulation superimposed to a constant excitation power that drives the dynamics
in the saturation regime of the transverse component. By sweeping the applied
field, we observe abrupt readjustement of the total number of magnons each time
the excitation coincides with a parametric mode. This gives rise to
ultra-narrow peaks whose linewith is lower than of the applied
field.Comment: 4 page
Lineshape distortion in a nonlinear auto-oscillator near generation threshold: Application to spin-torque nano-oscillators
The lineshape in an auto-oscillator with a large nonlinear frequency shift in
the presence of thermal noise is calculated. Near the generation threshold,
this lineshape becomes strongly non-Lorentzian, broadened, and asymmetric. A
Lorentzian lineshape is recovered far below and far above threshold, which
suggests that lineshape distortions provide a signature of the generation
threshold. The theory developed adequately describes the observed behavior of a
strongly nonlinear spin-torque nano-oscillator.Comment: 4 pages, 3 figure
Time domain study of frequency-power correlation in spin-torque oscillators
This paper describes a numerical experiment, based on full micromagnetic
simulations of current-driven magnetization dynamics in nanoscale spin valves,
to identify the origins of spectral linewidth broadening in spin torque
oscillators. Our numerical results show two qualitatively different regimes of
magnetization dynamics at zero temperature: regular (single-mode precessional
dynamics) and chaotic. In the regular regime, the dependence of the oscillator
integrated power on frequency is linear, and consequently the dynamics is well
described by the analytical theory of current-driven magnetization dynamics for
moderate amplitudes of oscillations. We observe that for higher oscillator
amplitudes, the functional dependence of the oscillator integrated power as a
function of frequency is not a single-valued function and can be described
numerically via introduction of nonlinear oscillator power. For a range of
currents in the regular regime, the oscillator spectral linewidth is a linear
function of temperature. In the chaotic regime found at large current values,
the linewidth is not described by the analytical theory. In this regime we
observe the oscillator linewidth broadening, which originates from sudden jumps
of frequency of the oscillator arising from random domain wall nucleation and
propagation through the sample. This intermittent behavior is revealed through
a wavelet analysis that gives superior description of the frequency jumps
compared to several other techniques.Comment: 11 pages, 4 figures to appear in PR
Saturation of Turbulent Drag Reduction in Dilute Polymer Solutions
Drag reduction by polymers in turbulent wall-bounded flows exhibits universal
and non-universal aspects. The universal maximal mean velocity profile was
explained in a recent theory. The saturation of this profile and the crossover
back to the Newtonian plug are non-universal, depending on Reynolds number Re,
concentration of polymer and the degree of polymerization . We
explain the mechanism of saturation stemming from the finiteness of
extensibility of the polymers, predict its dependence on and in the
limit of small and large Re, and present the excellent comparison of our
predictions to experiments on drag reduction by DNA.Comment: 4 pages, 4 figs., included, PRL, submitte
A Frequency-Controlled Magnetic Vortex Memory
Using the ultra low damping NiMnSb half-Heusler alloy patterned into
vortex-state magnetic nano-dots, we demonstrate a new concept of non-volatile
memory controlled by the frequency. A perpendicular bias magnetic field is used
to split the frequency of the vortex core gyrotropic rotation into two distinct
frequencies, depending on the sign of the vortex core polarity inside
the dot. A magnetic resonance force microscope and microwave pulses applied at
one of these two resonant frequencies allow for local and deterministic
addressing of binary information (core polarity)
Configurational entropy of magnetic skyrmions as an ideal gas
The study of thermodynamics of topological defects is an important challenge
to understand their underlying physics. Among them, magnetic skyrmions have a
leading role for their physical properties and potential applications in
storage and neuromorphic computing. In this paper, the thermodynamic statistics
of magnetic skyrmions is derived. It is shown that the skyrmion free energy can
be modelled via a parabolic function and the diameters statistics obeys the
Maxwell-Boltzmann distribution. This allows for making an analogy between the
behavior of the distribution of skyrmion diameters statistics and the diluted
gas Maxwell-Boltzmann molecules distribution at thermodynamical equilibrium.
The calculation of the skyrmion configurational entropy, due to
thermally-induced changes of size and shape of the skyrmion, is essential for
the determination of thermal fluctuations of the skyrmion energy around its
average value. These results can be employed to advance the field of
skyrmionics.Comment: Main text 26 pages and 6 figures. Supplementary Information 4 page
Oscillatory Energy Exchange Between Waves Coupled by a Dynamic Artificial Crystal
We describe a general mechanism of controllable energy exchange between waves
propagating in a dynamic artificial crystal. We show that if a spatial
periodicity is temporarily imposed on the transmission properties of a
wave-carrying medium whilst a wave is inside, this wave is coupled to a
secondary counter-propagating wave and energy oscillates between the two. The
oscillation frequency is determined by the width of the spectral band gap
created by the periodicity and the frequency difference between the coupled
waves. The effect is demonstrated with spin waves in a dynamic magnonic
crystal.Comment: 5 pages, 4 figure
- …