31 research outputs found

    PoboljÅ”anje učinkovitosti rada uređaja za obradu otpadne vode mljekarske industrije dodatkom bioaktivatora

    Get PDF
    The problem in the work of dairy wastewater treatment system of milk processing industry Dukat Dairy Industry Inc., Factory Sirela, which applies the technology of activated sludge are filamentous microorganisms that cause bulking of the activated sludge and consequent inefficient treatment of wastewater. Also, this activated sludge does not have good settling properties and separation from treated water. The factors which caused such poor sludge quality are: a sudden high organic load and changes in environmental factors. In order to improve the efficiency of the system, a role and contribution of bioactivator ā€œAquatopĀ® BAā€ was studied. The operation of the system is monitored during the period January-May in the year 2006 (bioactivator not added) and in the year 2009 (with addition of bioactivator). By adding the bioactivator better formation of flocs and good settling of activated sludge, prevention of filamentous bacteria growth and stable quality of the effluent to the required values prescribed by the Croatian waters to the chemical oxygen demand (COD) <700 mg/L and biochemical oxygen demand (BOD) <250 mg/L were achieved.Problem u radu sustava za obradu otpadne vode mljekarske industrije Dukat mliječna industrija d.d., Tvornica Sirela, koji primjenjuje tehnologiju aktivnog mulja čine filamentozne vrste mikroorganizama koje izazivaju napuhavanje mulja, a posljedično tome neučinkovitu obradu otpadne vode. Također, takav mulj nema svojstva dobre taloživosti, odnosno odjeljivanja od pročiŔćene vode. Na takvo stanje utječe iznenadno veliko organsko opterećenje sustava i promjene okoliÅ”nih čimbenika. U svrhu poboljÅ”anja rada sustava istražena je uloga i doprinos bioaktivatora ā€œAquatopĀ® BAā€. Rad sustava motren je tijekom razdoblja siječanj-svibanj 2006. godine (nije dodavan bioaktivator) i 2009. godine (dodavan bioaktivator). Dodatkom bioaktivatora postiže se bolje povezivanje mikroorganizama u nakupine, dobro taloženje aktivnog mulja, sprječavanje rasta filamentoznih bakterijai ustaljena kakvoća izlaznog toka prema zahtijevanim vrijednostima propisanim Vodopravnom dozvolom i to kemijska potroÅ”nja kisika (KPK) <700 mg/L, biokemijska potroÅ”nja kisika (BPK) <250 mg/L

    Metodi di trattamento delle acque reflue dellā€™industria della carne

    Get PDF
    Količina i sastav otpadnih voda mesne industrije ovise o vrsti mesa koje se obrađuje, načinu čiŔćenja opreme i veličini postrojenja. Otpadne vode mesne industrije visoko su onečiŔćene i opterećene proteinima, lipidima, ugljikohidratima i vlaknima. Industrija mesa obuhvaća klaonice, pogone za obradu i pogone za proizvodnju mesnih proizvoda. Istražene su brojne metode obrade otpadnih voda mesne industrije, fizikalni, kemijski i bioloÅ”kih procesi. Cilj obrade otpadne vode mesne industrije je postizanje kakvoće pročiŔćene vode koja zadovoljava zakonske propise, kvalitetno iskoriÅ”tenje nusprodukata procesa, a odabrani postupak obrade treba biti ekoloÅ”ki, ekonomski i tehnoloÅ”ki najbolji. Ovaj pregledni rad dat će literaturni pregled metoda obrade otpadnih voda mesne industrije kao i kakvoću otpadnih voda mesne industrije.The quantity and quality of meat industry wastewater depend on the type of meat processed, the way the equipment is cleaned, and the size of the plant. The meat industry wastewater is highly polluted and rich in proteins, lipids, carbohydrates and fibers. The meat industry includes slaughterhouses, processing plants and plants for the production of meat products. Numerous methods for meat industry wastewater treatment, physical, chemical and biological processes, have been investigated. The aim of meat industry wastewater treatment is to achieve the quality of purified water that meets the legal regulations, the quality utilisation of the process by-products, and the selected treatment process should be the most ecologically, economically and technologically advanced. This review paper will provide a literature review of meat industry wastewater treatment methods, as well as the quality of the meat industry wastewater.Die Menge und QualitƤt des Abwassers der Fleischindustrie hƤngt von der Art des verarbeiteten Fleisches, der Art der Reinigung der Anlagen und der GrĆ¶ĆŸe des Betriebes ab. Die AbwƤsser der Fleischindustrie sind stark verschmutzt und reich an Proteinen, Lipiden, Kohlenhydraten und Fasern. Zur Fleischindustrie gehƶren Schlachthƶfe, Verarbeitungsbetriebe und Anlagen zur Herstellung von Fleischprodukten. Es wurden zahlreiche Methoden zur Abwasserbehandlung in der Fleischindustrie sowie physikalische, chemische und biologische Verfahren untersucht. Das Ziel der Abwasserbehandlung in der Fleischindustrie ist es, die QualitƤt des gereinigten Wassers zu erreichen, die den gesetzlichen Vorschriften entspricht, eine gute Verwertung der Prozessnebenprodukte, wobei das gewƤhlte Behandlungsverfahren ƶkologisch, wirtschaftlich und technologisch fortschrittlich sein sollte. Diese Ɯbersichtsarbeit gibt einen LiteraturĆ¼berblick Ć¼ber die Methoden der Abwasserbehandlung in der Fleischindustrie sowie Ć¼ber die QualitƤt des Abwassers der Fleischindustrie.La cantidad y calidad de las aguas residuales de la industria cĆ”rnica depende del tipo de carne procesada, la forma de limpieza del equipo y del tamaƱo de la planta. Las aguas residuales de la industria cĆ”rnica estĆ”n muy contaminadas y cargadas de proteĆ­nas, lĆ­pidos, carbohidratos y fibras. La industria cĆ”rnica incluye mataderos, plantas de procesamiento y plantas para la producciĆ³n de productos cĆ”rnicos. Se han investigado numerosos mĆ©todos de tratamiento de aguas residuales de la industria cĆ”rnica, asĆ­ como los procesos fĆ­sicos, quĆ­micos y biolĆ³gicos. El objetivo del tratamiento de aguas residuales de la industria cĆ”rnica es lograr la calidad del agua purificada que cumpla con la legislaciĆ³n, la utilizaciĆ³n de calidad de los subproductos del proceso y el procedimiento de tratamiento seleccionado debe ser el mejor del aspecto ambiental, econĆ³mico y tecnolĆ³gico. Esta revisiĆ³n proporcionarĆ” una revisiĆ³n de la literatura sobre los mĆ©todos de tratamiento de aguas residuales de la industria cĆ”rnica, asĆ­ como la calidad de las aguas residuales de la industria cĆ”rnica.La quantitĆ  e la composizione delle acque reflue dellā€™industria della carne dipendono dal tipo della carne lavorata, dalle modalitĆ  di pulizia degli impianti e dalla grandezza dello stabilimento. Le acque di scarico dellā€™industria della carne sono altamente contaminate e ricche di proteine, lipidi, carboidrati e fibre. Lā€™industria della carne comprende gli impianti della macellazione, gli impianti della lavorazione e gli impianti della produzione dei prodotti a base di carne. Sono stati studiati numerosi metodi di trattamento delle acque reflue dellā€™industria della carne che consistono in processi fisici, chimici e biologici. Il trattamento delle acque reflue dellā€™industria della carne ha, come finalitĆ , il raggiungimento di una qualitĆ  delle acque depurate che soddisfi i parametri previsti dalla legge e lo sfruttamento ottimale dei sottoprodotti del processo, mentre il processo di trattamento prescelto deve essere il migliore possibile dal punto di vista ecologico, economico e tecnologico. Questā€™articolo di rassegna fornirĆ  un quadro bibliografico dei metodi trattamento e della qualitĆ  delle acque reflue dellā€™industria della carne

    Potencijal otpadne vode mljekarske industrije za proces denitrifikacije

    Get PDF
    In this work the potential of dairy wastewater for denitrification process by means of a microbial culture of nitrificants and denitrificants was investigated. The aim of this work was to remove nitrate by using organic compounds from the dairy wastewater as an electron donors. The minimal ratio of COD/NO3-N of 10 (COD-chemical oxygen demand/NO3-N-nitrate nitrogen) was required to achieve complete reduction of NO3-N. The microbial culture of nitrificants and denitrificants, that was previously adapted on the dairy wastewater, carried out nitrate reduction with a different substrate utilization rate. The denitrification rate of 5.75 mg NO3-N/Lh was achieved at the beginning of denitrification when the microbial culture utilizes readily biodegradable COD. Further degradation occurred with the denitrification rate of 1.7 mg NO3-N/Lh.U ovom radu istražen je potencijal otpadne vode mljekarske industrije za proces denitrifikacije pomoću mikrobne kulture nitrifikanata i denitrifikanata. Cilj rada je bio ukloniti nitrat koristeći organske sastojke iz otpadne vode industrije prerade mlijeka kao elektron donore. Minimalan omjer KPK/ NO3-N (KPK-kemijska potroÅ”nja kisika/NO3-N-nitratni duÅ”ik) potreban za postizanje potpune redukcije NO3-N iznosi 10. Mikrobna kultura nitrifikanata i denitrifikanata, prethodno prilagođena na otpadnu vodu mljekarske industrije, provodi redukciju nitrata uz različitu brzinu iskoriÅ”tenja supstrata. U početku denitrifikacije mikrobna kultura troÅ”i lako razgradivi KPK i postiže brzinu denitrifikacije od 5,75 mg NO3-N/Lh. Daljnja razgradnja zbiva se uz brzinu denitrifikacije od 1,7 mg NO3 N/Lh

    Evolucija bakterija tijekom stacionarne faze rasta

    Get PDF
    Metagenomics and advances in molecular biology methods have enhanced knowledge of microbial evolution, metabolism, functions, their interactions with other organisms and their environment. The ability to persist and adapt to changes in their environment is a common lifestyle of 1 % of the known culturable bacteria. Studies in the variety of species have identified an incredible diversity of bacterial lifespan. The holy grail of molecular biology is to understand the integrated genetic and metabolic patterns of prokaryotic organisms like the enteric bacterium Escherichia coli. The usual description of E. coli life cycle comprises four phases: lag, logarithmic, stationary, and death phase, omitting their persistence and evolution during prolonged stationary phase. During prolonged stationary/starvation period, in batch bacterial culture, selected mutants with increased fitness express growth advantage in stationary phase (GASP), which enables them to grow and displace the parent cells as the majority population. The analyses of growth competition of Gram-negative and/or Gram-positive mixed bacterial cultures showed that GASP phenomenon can result in four GASP phenotypes: strong, moderate, weak or abortive. Bacterial stress responses to starvation include functions that can increase genetic variability and produce transient mutator state, which is important for adaptive evolution.Metagenomika i suvremene metode molekularne biologije omogućili su razumijevanje evolucije, metabolizma i funkcije mikroorganizama te njihovih interakcija s drugim organizmima u okoliÅ”u. Otpornost i prilagodba na promjene u okoliÅ”u uobičajeni su za 1 % poznatih bakterija Å”to se mogu uzgajati u laboratoriju. Istraživanjem različitih bakterijskih vrsta uočena je njihova velika raznolikost. Escherichia coli je ā€žsveti gralā€œ molekularne biologije u razumijevanju genetike i metaboličkih modela. Životni se ciklus E. coli sastoji od četiri faze: lag, logaritamske, stacionarne i faze odumiranja, zanemarujući bakterijsku postojanost i evoluciju tijekom produljene stacionarne faze. U Å”aržnoj bakterijskoj kulturi, tijekom produljene stacionarne faze ili vremena izgladnjivanja, preživjele stanice mutanata brže rastu (engl. growth advantage in stationary phase - GASP), pa prerastaju i zamjenjuju većinu roditeljskih stanica. Analiza kompetitivnoga rasta Gram-pozitivnih i/ili Gram-negativnih bakterija, tijekom produljene stacionarne faze u mjeÅ”ovitim kulturama, pokazala je postojanje četiriju GASP fenotipova: jaki, umjereni, slabi i nerazvijeni. Bakterijski odgovor na izgladnjivanje obuhvaća stanične funkcije koje mogu povećati genetičku raznolikost i stvarati mutator stanice bitne za adaptivnu evoluciju bakterija

    FISH CANNING WASTEWATER TREATMENT IN SEQUENCING BATCH REACTOR WITH ACTIVATED SLUDGE

    Get PDF
    The biological performance of flocculent sludge in sequencing batch reactor for the treatment of fish canning wastewater was evaluated in terms of organic matter and nutrient removal by gradual increase of salt concentration in the nitritation-denitritation process. Salinity negatively affected the biological system performance in a way that reduced organic and nutrient removal. The removal efficiency of organic matter and nitrogen showed good performance below 20 g NaCl/L, while phosphate accumulating organisms activity was deteriorated and declined during whole experiment. Nitrogen removal occurred as ammonium oxidation with nitrite accumulation. Nitrite reduction was not affected by salt concentration

    BIODEGRADATION OF AZO DYE BY ADAPTED MIXED MICROBIAL CULTURES

    Get PDF
    Wastewater effluents from azo dye production and other dye-stuff using industries contain significant amounts of highly resistant azo dyes that require special treatment processes to prevent groundwater contamination. The present study is based on the approach of aerobic followed by anaerobic step for biodegradation and decolorization of azo dye. The main objective of this work was the adaptation, isolation and preparation of mixed microbial culture, from laboratory collection, catabolically able to biodegrade under aerobic conditions bordo azo dye present in mother lye after industrial production of that dye. The anaerobic step needed for biodegradation of azo dye was performed by the use of adapted active anaerobic sludge from a wastewater treatment plant of the sugar industry. The adapted aerobic and anaerobic microbial cultures demonstrated significant biodegradative enzymatic potential and can be further used for development of a continuous aerobic ā€“ anaerobic process for the treatment of wastewater from industrial production of azo dye

    Nitrogen Removal with Aerobic Granules ā€“ Effect of Dissolved Oxygen and Carbon/Nitrogen Ratio

    Get PDF
    Nitrogen removal efficiency related to the dissolved oxygen (DO) concentration (DO 1ā€“7Ā mgĀ lā€“1), carbon/nitrogen ratio (COD/N 1ā€“14), and the effect of airflow (0.4ā€“2.9Ā lĀ minā€“1) related to the granule size were investigated. The average chemical oxygen demand (COD) removal of ā‰„Ā 90Ā % was achieved at COD/NĀ ā‰„Ā 11, but the satisfactory N values in effluent for discharge into the surface waters were almost achieved at COD/N 14. DO of 2Ā mgĀ lā€“1 is recommended for efficient removal of N and COD with mature granules. The size (diameter) of the granules decreases with increased airflow

    Evolucija bakterija tijekom stacionarne faze rasta

    Get PDF
    Metagenomics and advances in molecular biology methods have enhanced knowledge of microbial evolution, metabolism, functions, their interactions with other organisms and their environment. The ability to persist and adapt to changes in their environment is a common lifestyle of 1 % of the known culturable bacteria. Studies in the variety of species have identified an incredible diversity of bacterial lifespan. The holy grail of molecular biology is to understand the integrated genetic and metabolic patterns of prokaryotic organisms like the enteric bacterium Escherichia coli. The usual description of E. coli life cycle comprises four phases: lag, logarithmic, stationary, and death phase, omitting their persistence and evolution during prolonged stationary phase. During prolonged stationary/starvation period, in batch bacterial culture, selected mutants with increased fitness express growth advantage in stationary phase (GASP), which enables them to grow and displace the parent cells as the majority population. The analyses of growth competition of Gram-negative and/or Gram-positive mixed bacterial cultures showed that GASP phenomenon can result in four GASP phenotypes: strong, moderate, weak or abortive. Bacterial stress responses to starvation include functions that can increase genetic variability and produce transient mutator state, which is important for adaptive evolution.Metagenomika i suvremene metode molekularne biologije omogućili su razumijevanje evolucije, metabolizma i funkcije mikroorganizama te njihovih interakcija s drugim organizmima u okoliÅ”u. Otpornost i prilagodba na promjene u okoliÅ”u uobičajeni su za 1 % poznatih bakterija Å”to se mogu uzgajati u laboratoriju. Istraživanjem različitih bakterijskih vrsta uočena je njihova velika raznolikost. Escherichia coli je ā€žsveti gralā€œ molekularne biologije u razumijevanju genetike i metaboličkih modela. Životni se ciklus E. coli sastoji od četiri faze: lag, logaritamske, stacionarne i faze odumiranja, zanemarujući bakterijsku postojanost i evoluciju tijekom produljene stacionarne faze. U Å”aržnoj bakterijskoj kulturi, tijekom produljene stacionarne faze ili vremena izgladnjivanja, preživjele stanice mutanata brže rastu (engl. growth advantage in stationary phase - GASP), pa prerastaju i zamjenjuju većinu roditeljskih stanica. Analiza kompetitivnoga rasta Gram-pozitivnih i/ili Gram-negativnih bakterija, tijekom produljene stacionarne faze u mjeÅ”ovitim kulturama, pokazala je postojanje četiriju GASP fenotipova: jaki, umjereni, slabi i nerazvijeni. Bakterijski odgovor na izgladnjivanje obuhvaća stanične funkcije koje mogu povećati genetičku raznolikost i stvarati mutator stanice bitne za adaptivnu evoluciju bakterija
    corecore