28 research outputs found
PoboljÅ”anje uÄinkovitosti rada ureÄaja za obradu otpadne vode mljekarske industrije dodatkom bioaktivatora
The problem in the work of dairy wastewater treatment system of milk processing industry Dukat Dairy Industry Inc., Factory Sirela, which applies the technology of activated sludge are filamentous microorganisms that cause bulking of the activated sludge and consequent inefficient treatment of wastewater. Also, this activated sludge does not have good settling properties and separation from treated water. The factors which caused such poor sludge quality are: a sudden high organic load and changes in environmental factors. In order to improve the efficiency of the system, a role and contribution of bioactivator āAquatopĀ® BAā was studied. The operation of the system is monitored during the period January-May in the year 2006 (bioactivator not added) and in the year 2009 (with addition of bioactivator). By adding the bioactivator better formation of flocs and good settling of activated sludge, prevention of filamentous bacteria growth and stable quality of the effluent to the required values prescribed by the Croatian waters to the chemical oxygen demand (COD) <700 mg/L and biochemical oxygen demand (BOD) <250 mg/L were achieved.Problem u radu sustava za obradu otpadne vode mljekarske industrije Dukat mlijeÄna industrija d.d., Tvornica Sirela, koji primjenjuje tehnologiju aktivnog mulja Äine filamentozne vrste mikroorganizama koje izazivaju napuhavanje mulja, a posljediÄno tome neuÄinkovitu obradu otpadne vode. TakoÄer, takav mulj nema svojstva dobre taloživosti, odnosno odjeljivanja od proÄiÅ”Äene vode. Na takvo stanje utjeÄe iznenadno veliko organsko optereÄenje sustava i promjene okoliÅ”nih Äimbenika. U svrhu poboljÅ”anja rada sustava istražena je uloga i doprinos bioaktivatora āAquatopĀ® BAā. Rad sustava motren je tijekom razdoblja sijeÄanj-svibanj 2006. godine (nije dodavan bioaktivator) i 2009. godine (dodavan bioaktivator). Dodatkom bioaktivatora postiže se bolje povezivanje mikroorganizama u nakupine, dobro taloženje aktivnog mulja, sprjeÄavanje rasta filamentoznih bakterijai ustaljena kakvoÄa izlaznog toka prema zahtijevanim vrijednostima propisanim Vodopravnom dozvolom i to kemijska potroÅ”nja kisika (KPK) <700 mg/L, biokemijska potroÅ”nja kisika (BPK) <250 mg/L
Metodi di trattamento delle acque reflue dellāindustria della carne
KoliÄina i sastav otpadnih voda mesne industrije ovise o vrsti mesa koje se obraÄuje, naÄinu ÄiÅ”Äenja opreme i veliÄini postrojenja. Otpadne vode mesne industrije visoko su oneÄiÅ”Äene i optereÄene proteinima, lipidima, ugljikohidratima i vlaknima. Industrija mesa obuhvaÄa klaonice, pogone za obradu i pogone za proizvodnju mesnih proizvoda. Istražene su brojne metode obrade otpadnih voda mesne industrije, fizikalni, kemijski i bioloÅ”kih procesi. Cilj obrade otpadne vode mesne industrije je postizanje kakvoÄe proÄiÅ”Äene vode koja zadovoljava zakonske propise, kvalitetno iskoriÅ”tenje nusprodukata procesa, a odabrani postupak obrade treba biti ekoloÅ”ki, ekonomski i tehnoloÅ”ki najbolji. Ovaj pregledni rad dat Äe literaturni pregled metoda obrade otpadnih voda mesne industrije kao i kakvoÄu otpadnih voda mesne industrije.The quantity and quality of meat industry wastewater depend on the type of meat processed, the way the equipment is cleaned, and the size of the plant. The meat industry wastewater is highly polluted and rich in proteins, lipids, carbohydrates and fibers. The meat industry includes slaughterhouses, processing plants and plants for the production of meat products. Numerous methods for meat industry wastewater treatment, physical, chemical and biological processes, have been investigated. The aim of meat industry wastewater treatment is to achieve the quality of purified water that meets the legal regulations, the quality utilisation of the process by-products, and the selected treatment process should be the most ecologically, economically and technologically advanced. This review paper will provide a literature review of meat industry wastewater treatment methods, as well as the quality of the meat industry wastewater.Die Menge und QualitƤt des Abwassers der Fleischindustrie hƤngt von der Art des verarbeiteten Fleisches, der Art der Reinigung der Anlagen und der GrƶĆe des Betriebes ab. Die AbwƤsser der Fleischindustrie sind stark verschmutzt und reich an Proteinen, Lipiden, Kohlenhydraten und Fasern. Zur Fleischindustrie gehƶren Schlachthƶfe, Verarbeitungsbetriebe und Anlagen zur Herstellung von Fleischprodukten. Es wurden zahlreiche Methoden zur Abwasserbehandlung in der Fleischindustrie sowie physikalische, chemische und biologische Verfahren untersucht. Das Ziel der Abwasserbehandlung in der Fleischindustrie ist es, die QualitƤt des gereinigten Wassers zu erreichen, die den gesetzlichen Vorschriften entspricht, eine gute Verwertung der Prozessnebenprodukte, wobei das gewƤhlte Behandlungsverfahren ƶkologisch, wirtschaftlich und technologisch fortschrittlich sein sollte. Diese Ćbersichtsarbeit gibt einen LiteraturĆ¼berblick Ć¼ber die Methoden der Abwasserbehandlung in der Fleischindustrie sowie Ć¼ber die QualitƤt des Abwassers der Fleischindustrie.La cantidad y calidad de las aguas residuales de la industria cĆ”rnica depende del tipo de carne procesada, la forma de limpieza del equipo y del tamaƱo de la planta. Las aguas residuales de la industria cĆ”rnica estĆ”n muy contaminadas y cargadas de proteĆnas, lĆpidos, carbohidratos y fibras. La industria cĆ”rnica incluye mataderos, plantas de procesamiento y plantas para la producciĆ³n de productos cĆ”rnicos. Se han investigado numerosos mĆ©todos de tratamiento de aguas residuales de la industria cĆ”rnica, asĆ como los procesos fĆsicos, quĆmicos y biolĆ³gicos. El objetivo del tratamiento de aguas residuales de la industria cĆ”rnica es lograr la calidad del agua purificada que cumpla con la legislaciĆ³n, la utilizaciĆ³n de calidad de los subproductos del proceso y el procedimiento de tratamiento seleccionado debe ser el mejor del aspecto ambiental, econĆ³mico y tecnolĆ³gico. Esta revisiĆ³n proporcionarĆ” una revisiĆ³n de la literatura sobre los mĆ©todos de tratamiento de aguas residuales de la industria cĆ”rnica, asĆ como la calidad de las aguas residuales de la industria cĆ”rnica.La quantitĆ e la composizione delle acque reflue dellāindustria della carne dipendono dal tipo della carne lavorata, dalle modalitĆ di pulizia degli impianti e dalla grandezza dello stabilimento. Le acque di scarico dellāindustria della carne sono altamente contaminate e ricche di proteine, lipidi, carboidrati e fibre. Lāindustria della carne comprende gli impianti della macellazione, gli impianti della lavorazione e gli impianti della produzione dei prodotti a base di carne. Sono stati studiati numerosi metodi di trattamento delle acque reflue dellāindustria della carne che consistono in processi fisici, chimici e biologici. Il trattamento delle acque reflue dellāindustria della carne ha, come finalitĆ , il raggiungimento di una qualitĆ delle acque depurate che soddisfi i parametri previsti dalla legge e lo sfruttamento ottimale dei sottoprodotti del processo, mentre il processo di trattamento prescelto deve essere il migliore possibile dal punto di vista ecologico, economico e tecnologico. Questāarticolo di rassegna fornirĆ un quadro bibliografico dei metodi trattamento e della qualitĆ delle acque reflue dellāindustria della carne
Potencijal otpadne vode mljekarske industrije za proces denitrifikacije
In this work the potential of dairy wastewater for denitrification process by means of a microbial culture of nitrificants and denitrificants was investigated. The aim of this work was to remove nitrate by using organic compounds from the dairy wastewater as an electron donors. The minimal ratio of COD/NO3-N of 10 (COD-chemical oxygen demand/NO3-N-nitrate nitrogen) was required to achieve complete reduction of NO3-N. The microbial culture of nitrificants and denitrificants, that was previously adapted on the dairy wastewater, carried out nitrate reduction with a different substrate utilization rate. The denitrification rate of 5.75 mg NO3-N/Lh was achieved at the beginning of denitrification when the microbial culture utilizes readily biodegradable COD. Further degradation occurred with the denitrification rate of 1.7 mg NO3-N/Lh.U ovom radu istražen je potencijal otpadne vode mljekarske industrije za proces denitrifikacije pomoÄu mikrobne kulture nitrifikanata i denitrifikanata. Cilj rada je bio ukloniti nitrat koristeÄi organske sastojke iz otpadne vode industrije prerade mlijeka kao elektron donore. Minimalan omjer KPK/ NO3-N (KPK-kemijska potroÅ”nja kisika/NO3-N-nitratni duÅ”ik) potreban za postizanje potpune redukcije NO3-N iznosi 10. Mikrobna kultura nitrifikanata i denitrifikanata, prethodno prilagoÄena na otpadnu vodu mljekarske industrije, provodi redukciju nitrata uz razliÄitu brzinu iskoriÅ”tenja supstrata. U poÄetku denitrifikacije mikrobna kultura troÅ”i lako razgradivi KPK i postiže brzinu denitrifikacije od 5,75 mg NO3-N/Lh. Daljnja razgradnja zbiva se uz brzinu denitrifikacije od 1,7 mg NO3 N/Lh
Evolucija bakterija tijekom stacionarne faze rasta
Metagenomics and advances in molecular biology methods have enhanced knowledge of microbial evolution, metabolism, functions, their interactions with other organisms and their environment. The ability to persist and adapt to changes in their environment is a common lifestyle of 1 % of the known culturable bacteria. Studies in the variety of species have identified an incredible diversity of bacterial lifespan. The holy grail of molecular biology is to understand the integrated genetic and metabolic patterns of prokaryotic organisms like the enteric bacterium Escherichia coli. The usual description of E. coli life cycle comprises four phases: lag, logarithmic, stationary, and death phase, omitting their persistence and evolution during prolonged stationary phase. During prolonged stationary/starvation period, in batch bacterial culture, selected mutants with increased fitness express growth advantage in stationary phase (GASP), which enables them to grow and displace the parent cells as the majority population. The analyses of growth competition of Gram-negative and/or Gram-positive mixed bacterial cultures showed that GASP phenomenon can result in four GASP phenotypes: strong, moderate, weak or abortive. Bacterial stress responses to starvation include functions that can increase genetic variability and produce transient mutator state, which is important for adaptive evolution.Metagenomika i suvremene metode molekularne biologije omoguÄili su razumijevanje evolucije, metabolizma i funkcije mikroorganizama te njihovih interakcija s drugim organizmima u okoliÅ”u. Otpornost i prilagodba na promjene u okoliÅ”u uobiÄajeni su za 1 % poznatih bakterija Å”to se mogu uzgajati u laboratoriju. Istraživanjem razliÄitih bakterijskih vrsta uoÄena je njihova velika raznolikost. Escherichia coli je āsveti gralā molekularne biologije u razumijevanju genetike i metaboliÄkih modela. Životni se ciklus E. coli sastoji od Äetiri faze: lag, logaritamske, stacionarne i faze odumiranja, zanemarujuÄi bakterijsku postojanost i evoluciju tijekom produljene stacionarne faze. U Å”aržnoj bakterijskoj kulturi, tijekom produljene stacionarne faze ili vremena izgladnjivanja, preživjele stanice mutanata brže rastu (engl. growth advantage in stationary phase - GASP), pa prerastaju i zamjenjuju veÄinu roditeljskih stanica. Analiza kompetitivnoga rasta Gram-pozitivnih i/ili Gram-negativnih bakterija, tijekom produljene stacionarne faze u mjeÅ”ovitim kulturama, pokazala je postojanje Äetiriju GASP fenotipova: jaki, umjereni, slabi i nerazvijeni. Bakterijski odgovor na izgladnjivanje obuhvaÄa staniÄne funkcije koje mogu poveÄati genetiÄku raznolikost i stvarati mutator stanice bitne za adaptivnu evoluciju bakterija
FISH CANNING WASTEWATER TREATMENT IN SEQUENCING BATCH REACTOR WITH ACTIVATED SLUDGE
The biological performance of flocculent sludge in sequencing batch reactor for the treatment of fish canning wastewater was evaluated in terms of organic matter and nutrient removal by gradual increase of salt concentration in the nitritation-denitritation process. Salinity negatively affected the biological system performance in a way that reduced organic and nutrient removal. The removal efficiency of organic matter and nitrogen showed good performance below 20 g NaCl/L, while phosphate accumulating organisms activity was deteriorated and declined during whole experiment. Nitrogen removal occurred as ammonium oxidation with nitrite accumulation. Nitrite reduction was not affected by salt concentration
Nitrogen Removal with Aerobic Granules ā Effect of Dissolved Oxygen and Carbon/Nitrogen Ratio
Nitrogen removal efficiency related to the dissolved oxygen (DO) concentration (DO 1ā7Ā mgĀ lā1), carbon/nitrogen ratio (COD/N 1ā14), and the effect of airflow (0.4ā2.9Ā lĀ minā1) related to the granule size were investigated. The average chemical oxygen demand (COD) removal of ā„Ā 90Ā % was achieved at COD/NĀ ā„Ā 11, but the satisfactory N values in effluent for discharge into the surface waters were almost achieved at COD/N 14. DO of 2Ā mgĀ lā1 is recommended for efficient removal of N and COD with mature granules. The size (diameter) of the granules decreases with increased airflow
Evolucija bakterija tijekom stacionarne faze rasta
Metagenomics and advances in molecular biology methods have enhanced knowledge of microbial evolution, metabolism, functions, their interactions with other organisms and their environment. The ability to persist and adapt to changes in their environment is a common lifestyle of 1 % of the known culturable bacteria. Studies in the variety of species have identified an incredible diversity of bacterial lifespan. The holy grail of molecular biology is to understand the integrated genetic and metabolic patterns of prokaryotic organisms like the enteric bacterium Escherichia coli. The usual description of E. coli life cycle comprises four phases: lag, logarithmic, stationary, and death phase, omitting their persistence and evolution during prolonged stationary phase. During prolonged stationary/starvation period, in batch bacterial culture, selected mutants with increased fitness express growth advantage in stationary phase (GASP), which enables them to grow and displace the parent cells as the majority population. The analyses of growth competition of Gram-negative and/or Gram-positive mixed bacterial cultures showed that GASP phenomenon can result in four GASP phenotypes: strong, moderate, weak or abortive. Bacterial stress responses to starvation include functions that can increase genetic variability and produce transient mutator state, which is important for adaptive evolution.Metagenomika i suvremene metode molekularne biologije omoguÄili su razumijevanje evolucije, metabolizma i funkcije mikroorganizama te njihovih interakcija s drugim organizmima u okoliÅ”u. Otpornost i prilagodba na promjene u okoliÅ”u uobiÄajeni su za 1 % poznatih bakterija Å”to se mogu uzgajati u laboratoriju. Istraživanjem razliÄitih bakterijskih vrsta uoÄena je njihova velika raznolikost. Escherichia coli je āsveti gralā molekularne biologije u razumijevanju genetike i metaboliÄkih modela. Životni se ciklus E. coli sastoji od Äetiri faze: lag, logaritamske, stacionarne i faze odumiranja, zanemarujuÄi bakterijsku postojanost i evoluciju tijekom produljene stacionarne faze. U Å”aržnoj bakterijskoj kulturi, tijekom produljene stacionarne faze ili vremena izgladnjivanja, preživjele stanice mutanata brže rastu (engl. growth advantage in stationary phase - GASP), pa prerastaju i zamjenjuju veÄinu roditeljskih stanica. Analiza kompetitivnoga rasta Gram-pozitivnih i/ili Gram-negativnih bakterija, tijekom produljene stacionarne faze u mjeÅ”ovitim kulturama, pokazala je postojanje Äetiriju GASP fenotipova: jaki, umjereni, slabi i nerazvijeni. Bakterijski odgovor na izgladnjivanje obuhvaÄa staniÄne funkcije koje mogu poveÄati genetiÄku raznolikost i stvarati mutator stanice bitne za adaptivnu evoluciju bakterija
BIODEGRADATION OF AZO DYE BY ADAPTED MIXED MICROBIAL CULTURES
Wastewater effluents from azo dye production and other dye-stuff using industries contain significant amounts of highly resistant azo dyes that require special treatment processes to prevent groundwater contamination. The present study is based on the approach of aerobic followed by anaerobic step for biodegradation and decolorization of azo dye. The main objective of this work was the adaptation, isolation and preparation of mixed microbial culture, from laboratory collection, catabolically able to biodegrade under aerobic conditions bordo azo dye present in mother lye after industrial production of that dye. The anaerobic step needed for biodegradation of azo dye was performed by the use of adapted active anaerobic sludge from a wastewater treatment plant of the sugar industry. The adapted aerobic and anaerobic microbial cultures demonstrated significant biodegradative enzymatic potential and can be further used for development of a continuous aerobic ā anaerobic process for the treatment of wastewater from industrial production of azo dye