236 research outputs found

    Focus on Query: Adversarial Mining Transformer for Few-Shot Segmentation

    Full text link
    Few-shot segmentation (FSS) aims to segment objects of new categories given only a handful of annotated samples. Previous works focus their efforts on exploring the support information while paying less attention to the mining of the critical query branch. In this paper, we rethink the importance of support information and propose a new query-centric FSS model Adversarial Mining Transformer (AMFormer), which achieves accurate query image segmentation with only rough support guidance or even weak support labels. The proposed AMFormer enjoys several merits. First, we design an object mining transformer (G) that can achieve the expansion of incomplete region activated by support clue, and a detail mining transformer (D) to discriminate the detailed local difference between the expanded mask and the ground truth. Second, we propose to train G and D via an adversarial process, where G is optimized to generate more accurate masks approaching ground truth to fool D. We conduct extensive experiments on commonly used Pascal-5i and COCO-20i benchmarks and achieve state-of-the-art results across all settings. In addition, the decent performance with weak support labels in our query-centric paradigm may inspire the development of more general FSS models. Code will be available at https://github.com/Wyxdm/AMNet.Comment: Accepted to NeurIPS 202

    Intelligence of Astronomical Optical Telescope: Present Status and Future Perspectives

    Full text link
    Artificial intelligence technology has been widely used in astronomy, and new artificial intelligence technologies and application scenarios are constantly emerging. There have been a large number of papers reviewing the application of artificial intelligence technology in astronomy. However, relevant articles seldom mention telescope intelligence separately, and it is difficult to understand the current development status and research hotspots of telescope intelligence from these papers. This paper combines the development history of artificial intelligence technology and the difficulties of critical technologies of telescopes, comprehensively introduces the development and research hotspots of telescope intelligence, then conducts statistical analysis on various research directions of telescope intelligence and defines the research directions' merits. All kinds of research directions are evaluated, and the research trend of each telescope's intelligence is pointed out. Finally, according to the advantages of artificial intelligence technology and the development trend of telescopes, future research hotspots of telescope intelligence are given.Comment: 19 pages, 6 figure, for questions or comments, please email [email protected]

    Cross-Modality Paired-Images Generation for RGB-Infrared Person Re-Identification

    Full text link
    RGB-Infrared (IR) person re-identification is very challenging due to the large cross-modality variations between RGB and IR images. The key solution is to learn aligned features to the bridge RGB and IR modalities. However, due to the lack of correspondence labels between every pair of RGB and IR images, most methods try to alleviate the variations with set-level alignment by reducing the distance between the entire RGB and IR sets. However, this set-level alignment may lead to misalignment of some instances, which limits the performance for RGB-IR Re-ID. Different from existing methods, in this paper, we propose to generate cross-modality paired-images and perform both global set-level and fine-grained instance-level alignments. Our proposed method enjoys several merits. First, our method can perform set-level alignment by disentangling modality-specific and modality-invariant features. Compared with conventional methods, ours can explicitly remove the modality-specific features and the modality variation can be better reduced. Second, given cross-modality unpaired-images of a person, our method can generate cross-modality paired images from exchanged images. With them, we can directly perform instance-level alignment by minimizing distances of every pair of images. Extensive experimental results on two standard benchmarks demonstrate that the proposed model favourably against state-of-the-art methods. Especially, on SYSU-MM01 dataset, our model can achieve a gain of 9.2% and 7.7% in terms of Rank-1 and mAP. Code is available at https://github.com/wangguanan/JSIA-ReID.Comment: accepted by AAAI'2
    • …
    corecore