22 research outputs found
Human Papillomavirus Type 18 E6 and E7 Genes Integrate into Human Hepatoma Derived Cell Line Hep G2
Background and Objectives: Human papillomaviruses have been linked causally to some human cancers such as cervical carcinoma, but there is very little research addressing the effect of HPV infection on human liver cells. We chose the human hepatoma derived cell line Hep G2 to investigate whether HPV gene integration took place in liver cells as well. Methods: We applied PCR to detect the possible integration of HPV genes in Hep G2 cells. We also investigated the expression of the integrated E6 and E7 genes by using RT-PCR and Western blotting. Then, we silenced E6 and E7 expression and checked the cell proliferation and apoptosis in Hep G2 cells. Furthermore, we analyzed the potential genes involved in cell cycle and apoptosis regulatory pathways. Finally, we used in situ hybridization to detect HPV 16/18 in hepatocellular carcinoma samples. Results: Hep G2 cell line contains integrated HPV 18 DNA, leading to the expression of the E6 and E7 oncogenic proteins. Knockdown of the E7 and E6 genes expression reduced cell proliferation, caused the cell cycle arrest at the S phase, and increased apoptosis. The human cell cycle and apoptosis real-time PCR arrays analysis demonstrated E6 and E7-mediated regulation of some genes such as Cyclin H, UBA1, E2F4, p53, p107, FASLG, NOL3 and CASP14. HPV16/18 was found in only 9% (9/100) of patients with hepatocellular carcinoma. Conclusion: Our investigations showed that HPV 18 E6 and E7 genes can be integrated into the Hep G2, and we observed a low prevalence of HPV 16/18 in hepatocellular carcinoma samples. However, the precise risk of HPV as causative agent of hepatocellular carcinoma needs further study
Mechanism and enhancement of lipid accumulation in filamentous oleaginous microalgae Tribonema minus under heterotrophic condition
Abstract Background The filamentous microalgae Tribonema minus accumulates large amounts of lipids under photoautotrophic condition, while under heterotrophic condition, the lipid content decreased dramatically. Determination of the differences in metabolic pathways between photoautotrophic and heterotrophic growth will provide targets and strategies for improvement of lipid accumulation in heterotrophic cells. Methods The metabolic differences between photoautotrophically and heterotrophically cultivated T. minus cells were studied by comparing the growth, biochemical compositions and transcriptomic and metabolomic profiles of the cells. Based on comparative transcriptomic and metabolomic studies, we generated a global model of the changes in central carbon metabolism and lipid biosynthetic pathways that occur under photoautotrophic and heterotrophic growth conditions. Moreover, the specific effects of supplementation with exogenous key metabolic intermediates on the lipid accumulation in heterotrophic culture were analyzed. Results Compared to photoautotrophic cultures, heterotrophic cultures exhibited enhanced biomass levels and carbohydrate content, but decreased lipid accumulation. These effects were accompanied by low expression levels of genes involved in glycolysis, de novo fatty acids biosynthesis and lipid biosynthesis, and high levels of genes involved in gluconeogenesis. In addition, the levels of key metabolites involved in glycolysis/gluconeogenesis were elevated in abundance, whereas those of certain fatty acids and citric acid were decreased in heterotrophic cultures. Upon supplementation with exogenous potassium palmitate, the lipid content increased dramatically in heterotrophically cultivated T. minus. Conclusion An insufficient supply of carbon precursors caused the low levels of lipid accumulation during heterotrophic cultivation. Appropriate carbon metabolite supplementation based on the metabolomic data was shown to promote lipid accumulation. Moreover, gene regulatory metabolic targets were also identified via omics analysis
Effects of seed age, inoculum density, and culture conditions on growth and hydrocarbon accumulation of Botryococcus braunii SAG807-1 with attached culture
Abstract Background Botryococcus braunii is difficult to cultivate and has a limited amount of substantive scale-up and productivity assessments with conventionally suspended cultivation systems, such as open pond or closed photobioreactors. The biomass concentrations of cultivated microalgal biofilms are much higher than those of suspension cultures, and the attached microalgal cells are easily separated from cultivation media. However, studies on the attached cultivation conditions for B. braunii have been rarely performed. Results Herein, an attached cultivation method for B. braunii SAG 807-1 incubation was introduced. The effects of primary culture conditions on growth and hydrocarbon accumulation were investigated. Seed age influenced the biomass and hydrocarbon accumulation in B. braunii, and the highest values were 5.97 and 2.99 g m−2 day−1, respectively, when seed age was 14 days. The appropriate range of initial inoculation density was 7.9–10.1 g m−2. Light intensity was a dominating factor influencing B. braunii’s growth in the attached culture, and the light saturation point was 100–150 μmol m−2 s−1. Periodic illumination in 8:16 light: dark cycle had the highest utilisation of photons at approximately 1.0 g of biomass per mole of photons. The increasing CO2 concentration in aerated gas improved the growth rate, but its concentration should be 1%. Conclusions Attached algal cultivation systems have been widely explored. However, the optimised values for aqueous suspension methods may be unnecessary for the attached system. Optimised seed age, inoculum density, CO2 concentration, light intensity and photoperiod can improve the growth and hydrocarbon accumulation of B. braunii SAG807-1 with the attached culture
Pathogenic Factors and Mechanisms of the Alternaria Leaf Spot Pathogen in Apple
Alternaria leaf spot seriously threatens the sustainable development of the global apple industry, causing significant losses and reducing fruit quality and yield. The causal agent Alternaria alternata f. sp. mali (Alternaria mali, ALT) produces various molecules to modulate infection, such as cell wall-degrading enzymes, toxins, and elicitor-like molecules. ALT produces the host-specific AM-toxin, an important pathogenicity factor. ALT also releases effectors into apple cells that modify host defense, but these proteins have not yet been described. Here, we identified the pathogenic fungal types responsible for early defoliation from diseased leaves of Fuji (Malus domestica cv. ‘Fuji’) apple collected from five districts in Shandong Province, China. The ALT isolates ALT2 to ALT7 were pathogenic to four apple cultivars, with ALT7 being the most aggressive. We extracted mycotoxins (AM-toxin-2 to AM-toxin-7) from each isolate and used them to treat different apple varieties, which led to leaf-spot symptoms and damaged chloroplasts and nuclear membranes, followed by cell death. AM-toxin-7 produced the most severe symptoms, but chloroplasts remained intact when the mycotoxin was inactivated. Mass spectrometry identified 134 secretory proteins in ALT7 exosomes, and three secreted proteins (AltABC, AltAO, and AltPDE) were confirmed to be involved in apple pathogenesis. Therefore, ALT secretes AM-toxin and secretory proteins as an infection strategy to promote fungal invasion and overcome the host defense system
Comparative transcriptome analyses of oleaginous Botryococcus braunii race A reveal significant differences in gene expression upon cobalt enrichment
BackgroundBotryococcus braunii is known for its high hydrocarbon content, thus making it a strong candidate feedstock for biofuel production. Previous study has revealed that a high cobalt concentration can promote hydrocarbon synthesis and it has little effect on growth of B. braunii cells. However, mechanisms beyond the cobalt enrichment remain unknown. This study seeks to explore the physiological and transcriptional response and the metabolic pathways involved in cobalt-induced hydrocarbon synthesis in algae cells.ResultsGrowth curves were similar at either normal or high cobalt concentration (4.5mg/L), suggesting the absence of obvious deleterious effects on growth introduced by cobalt. Photosynthesis indicators (decline in Fv/Fm ratio and chlorophyll content) and reactive oxygen species parameters revealed an increase in physiological stress in the high cobalt concentration. Moreover, cobalt enrichment treatment resulted in higher crude hydrocarbon content (51.3% on day 8) compared with the control (43.4% on day 8) throughout the experiment (with 18.2% improvement finally). Through the de novo assembly and functional annotation of the B. braunii race A SAG 807-1 transcriptome, we retrieved 196,276 non-redundant unigenes with an average length of 1086bp. Of the assembled unigenes, 89,654 (45.7%), 42,209 (21.5%), and 32,318 (16.5%) were found to be associated with at least one KOG, GO, or KEGG ortholog function. In the early treatment (day 2), the most strongly upregulated genes were those involved in the fatty acid biosynthesis and metabolism and oxidative phosphorylation, whereas the most downregulated genes were those involved in carbohydrate metabolism and photosynthesis. Genes that produce terpenoid liquid hydrocarbons were also well identified and annotated, and 21 (or 29.2%) were differentially expressed along the cobalt treatment.ConclusionsBotryococcus braunii SAG 807-1 can tolerate high cobalt concentration and benefit from hydrocarbon accumulation. The time-course expression profiles for fatty acid biosynthesis, metabolism, and TAG assembly were obtained through different approaches but had equally satisfactory results with the redirection of free long-chain fatty acid and VLCFA away from TAG assembly and oxidation. These molecules served as precursors and backbone supply for the fatty acid-derived hydrocarbon accumulation. These findings provide a foundation for exploiting the regulation mechanisms in B. braunii race A for improved photosynthetic production of hydrocarbons.</p
Death and Rebirth: Regional Renewal and Development of Industrial Architecture Heritages in Shanghai
Efficacy and safety of low-dose aspirin on preventing transplant renal artery stenosis: a prospective randomized controlled trial
Abstract. Background:. Transplant renal artery stenosis (TRAS) is a vascular complication after kidney transplantation associated with poor outcomes. This study aimed to analyze the efficacy and safety of low-dose aspirin for preventing TRAS.
Methods:. After kidney transplantation, patients were enrolled from January 2018 to December 2020 in Henan Provincial People's Hospital. A total of 351 enrolled recipients were randomized to an aspirin group with low-dose intake of aspirin in addition to standard treatment (n = 178), or a control group with only standard treatment (n = 173). The patients was initially diagnosed as TRAS (id-TRAS) by Doppler ultrasound, and confirmed cases were diagnosed by DSA (c-TRAS).
Results:. In the aspirin and control groups, 15.7% (28/178) and 22.0% (38/173) of the recipients developed id-TRAS, respectively, with no statistical difference. However, for c-TRAS, the difference of incidence and cumulative incidence was statistically significant. The incidence of c-TRAS was lower in the aspirin group compared with the control group (2.8% [5/178] vs. 11.6% [20/173], P = 0.001). Kaplan–Meier estimates and Cox regression model identified the cumulative incidence and hazard ratio (HR) of TRAS over time in two groups, showing that recipients treated with aspirin had a significantly lower risk of c-TRAS than those who were not treated (log-rank P = 0.001, HR = 0.23, 95% confidence interval [CI]: 0.09–0.62). The levels of platelet aggregation rate (P < 0.001), cholesterol (P = 0.028), and low-density lipoprotein cholesterol (P = 0.003) in the aspirin group were decreased compared with the control group in the third-month post-transplantation. For the incidence of adverse events, there was no statistical difference.
Conclusion:. Clinical application of low-dose aspirin after renal transplant could prevent the development of TRAS with no significant increase in adverse effects.
Trial Registration:. Clinicaltrials.gov, NCT04260828