71 research outputs found

    RXFOOD: Plug-in RGB-X Fusion for Object of Interest Detection

    Full text link
    The emergence of different sensors (Near-Infrared, Depth, etc.) is a remedy for the limited application scenarios of traditional RGB camera. The RGB-X tasks, which rely on RGB input and another type of data input to resolve specific problems, have become a popular research topic in multimedia. A crucial part in two-branch RGB-X deep neural networks is how to fuse information across modalities. Given the tremendous information inside RGB-X networks, previous works typically apply naive fusion (e.g., average or max fusion) or only focus on the feature fusion at the same scale(s). While in this paper, we propose a novel method called RXFOOD for the fusion of features across different scales within the same modality branch and from different modality branches simultaneously in a unified attention mechanism. An Energy Exchange Module is designed for the interaction of each feature map's energy matrix, who reflects the inter-relationship of different positions and different channels inside a feature map. The RXFOOD method can be easily incorporated to any dual-branch encoder-decoder network as a plug-in module, and help the original backbone network better focus on important positions and channels for object of interest detection. Experimental results on RGB-NIR salient object detection, RGB-D salient object detection, and RGBFrequency image manipulation detection demonstrate the clear effectiveness of the proposed RXFOOD.Comment: 10 page

    Distinguishing and controlling Mottness in 1T-TaS2_2 by ultrafast light

    Full text link
    Distinguishing and controlling the extent of Mottness is important for materials where the energy scales of the onsite Coulomb repulsion U and the bandwidth W are comparable. Here we report the ultrafast electronic dynamics of 1T-TaS2_2 by ultrafast time- and angle-resolved photoemission spectroscopy. A comparison of the electron dynamics for the newly-discovered intermediate phase (I-phase) as well as the low-temperature commensurate charge density wave (C-CDW) phase shows distinctive dynamics. While the I-phase is characterized by an instantaneous response and nearly time-resolution-limited fast relaxation (~200 fs), the C-CDW phase shows a delayed response and a slower relaxation (a few ps). Such distinctive dynamics refect the different relaxation mechanisms and provide nonequilibrium signatures to distinguish the Mott insulating I-phase from the C-CDW band insulating phase. Moreover, a light-induced bandwidth reduction is observed in the C-CDW phase, pushing it toward the Mott insulating phase. Our work demonstrates the power of ultrafast light-matter interaction in both distinguishing and controlling the extent of Mottness on the ultrafast timescale

    Defense against Adversarial Cloud Attack on Remote Sensing Salient Object Detection

    Full text link
    Detecting the salient objects in a remote sensing image has wide applications for the interdisciplinary research. Many existing deep learning methods have been proposed for Salient Object Detection (SOD) in remote sensing images and get remarkable results. However, the recent adversarial attack examples, generated by changing a few pixel values on the original remote sensing image, could result in a collapse for the well-trained deep learning based SOD model. Different with existing methods adding perturbation to original images, we propose to jointly tune adversarial exposure and additive perturbation for attack and constrain image close to cloudy image as Adversarial Cloud. Cloud is natural and common in remote sensing images, however, camouflaging cloud based adversarial attack and defense for remote sensing images are not well studied before. Furthermore, we design DefenseNet as a learn-able pre-processing to the adversarial cloudy images so as to preserve the performance of the deep learning based remote sensing SOD model, without tuning the already deployed deep SOD model. By considering both regular and generalized adversarial examples, the proposed DefenseNet can defend the proposed Adversarial Cloud in white-box setting and other attack methods in black-box setting. Experimental results on a synthesized benchmark from the public remote sensing SOD dataset (EORSSD) show the promising defense against adversarial cloud attacks
    • …
    corecore