17 research outputs found

    The Mixing Counterion Effect on DNA Compaction and Charge Neutralization at Low Ionic Strength

    No full text
    DNA compaction and charge neutralization in a mixing counterion solution involves competitive and cooperative electrostatic binding, and sometimes counterion complexation. At normal ionic strength, it has been found that the charge neutralization of DNA by the multivalent counterion is suppressed when being added extra mono- and di-valent counterions. Here, we explore the effect mixing counterion on DNA compaction and charge neutralization under the condition of low ionic strength. Being quite different from normal ionic strength, the electrophoretic mobility of DNA in multivalent counterion solution (octalysine, spermine) increases the presence of mono- and di-valent cations, such as sodium and magnesium ions. It means that the charge neutralization of DNA by the multivalent counterion is promoted rather than suppressed when introducing extra mono- and di-valent counterions into solution. This conclusion is also supported by the measurement of condensing and unraveling forces of DNA condensates under the same condition by single molecular magnetic tweezers. This mixing effect can be attributed to the cooperative electrostatic binding of counterions to DNA when the concentration of counterions in solution is below a critical concentration

    DNA Compaction and Charge Neutralization Regulated by Divalent Ions in very Low pH Solution

    No full text
    DNA conformation is strongly dependent on the valence of counterions in solution, and a valence of at least three is needed for DNA compaction. Recently, we directly demonstrated DNA compaction and its regulation, mediated by divalent cations, by lowering the pH of a solution. In the present study, we found that the critical electrophoretic mobility of DNA is promoted to around −1.0 × 10−4 cm2 V−1 s−1 to incur DNA compaction or condensation in a tri- and tetravalent counterions solution, corresponding to an about 89% neutralized charge fraction of DNA. This is also valid for DNA compaction by divalent counterions in a low pH solution. It is notable that the critical charge neutralization of DNA for compaction is only about 1% higher than the saturated charge fraction of DNA in a mild divalent ion solution. We also found that DNA compaction by divalent cations at low pH is weakened and even decondensed with an increasing concentration of counterions

    Investigating the Influence of Magnesium Ions on p53–DNA Binding Using Atomic Force Microscopy

    No full text
    p53 is a tumor suppressor protein that plays a significant role in apoptosis and senescence, preserving genomic stability, and preventing oncogene expression. Metal ions, such as magnesium and zinc ions, have important influences on p53–DNA interactions for stabilizing the structure of the protein and enhancing its affinity to DNA. In the present study, we systematically investigated the interaction of full length human protein p53 with DNA in metal ion solution by atomic force microscopy (AFM). The p53–DNA complexes at various p53 concentrations were scanned by AFM and their images are used to measure the dissociation constant of p53–DNA binding by a statistical method. We found that the dissociation constant of p53 binding DNA is 328.02 nmol/L in physiological buffer conditions. The influence of magnesium ions on p53–DNA binding was studied by AFM at various ion strengths through visualization. We found that magnesium ions significantly stimulate the binding of the protein to DNA in a sequence-independent manner, different from that stimulated by zinc. Furthermore, the high concentrations of magnesium ions can promote p53 aggregation and even lead to the formation of self-assembly networks of DNA and p53 proteins. We propose an aggregation and self-assembly model based on the present observation and discuss its biological meaning

    Effects of a two-meal daily feeding pattern with varied crude protein levels on growth performance and antioxidant indexes in pigs

    No full text
    The present study aimed to evaluate the effects of daily feeding pattern on growth performance, blood biochemistry, and antioxidant indexes in pigs. One hundred and eighty female Duroc × Landrace × Yorkshire (DLY) pigs with similar body weight (11.00 ± 0.12 kg) were randomly assigned to 3 groups: the control group (fed 17.01% CP diet, twice daily); high-low group (H-L group, fed 18.33% CP diet in the morning, followed by 15.70% CP diet in the afternoon); and low-high group (L-H group, fed 15.70% CP diet in the morning, followed by 18.33% CP diet in the afternoon) (n = 6). Comparable amounts of their respective diets were given at 05:30 and 15:00 throughout the experimental periods to make all the treatments consumed the same type of food and the same amount of calories on a daily basis. On day 30, one pig was randomly selected per litter for blood samples. Compared with the control group, ADG in the H-L and L-H groups increased by 8.11% and 16.23%, but not significant (P > 0.05); and blood urea nitrogen (BUN) in the H-L and L-H groups decreased by 26.76% and 41.04% (P < 0.05), respectively. The H-L group feeding pattern could significantly improve levels of serum superoxide dismutase (SOD), when compared with the control group. These findings suggest that the two-meal daily feeding pattern with varied levels of CP affects serum levels of BUN and SOD. These changes could effectively silightly improve growth performance and antioxidant capacity in pigs without incurring increased feeding costs

    The time of Calcium Feeding Affects the Productive Performance of Sows

    No full text
    This study aims to investigate the effect of Calcium (Ca) feeding time on a sow&rsquo;s productive performance and the profiles of serum mineral elements during late pregnancy and lactation. A total of 75 pregnant sows were assigned to three groups: The control (C), earlier-later (E-L), and later-earlier (L-E) groups. During late pregnancy, the C group was fed an extra 4.5 g Ca (in the form of CaCO3) at both 06:00 and 15:00, the E-L group was fed an extra 9 g Ca at 06:00, and the L-E group was fed an extra 9 g Ca at 15:00. Similar treatments with double the amount of Ca were applied during lactation. The results show that, compared with the C group, L-E feeding decreased the number of stillbirths and the duration of farrowing and placenta expulsion (FARPLA) and increased the average daily weight gain (ADG) of piglets. Similarly, E-L feeding increased the ADG of piglets (p &lt; 0.05). Furthermore, both E-L and L-E feeding increased the Ca levels in sow serum and umbilical serum, and the Fe levels in umbilical serum, but decreased the Ca levels in the placenta and colostrum (p &lt; 0.05). Experiments on the genes involved in mineral element transport showed that E-L feeding activated the mRNA expression of TRPV5, S100G, SLC30A7, SLC39A4, and Ferroportin1, while it inhibited the mRNA expression of ATP7A in the placenta (p &lt; 0.05). Moreover, L-E feeding up-regulated the mRNA expression of ATP2B and IREB2, while it down-regulated the mRNA expression of ATP7B in the placenta (p &lt; 0.05). In conclusion, the present study demonstrated that maternal Ca feeding at 15:00 h during late pregnancy and lactation decreased FARPLA and stillbirths and improved the growth performance of suckling piglets by altering the mineral element of the metabolism in the umbilical serum and milk, compared to conventional feeding regimes
    corecore