72 research outputs found

    DASICS: Enhancing Memory Protection with Dynamic Compartmentalization

    Full text link
    In the existing software development ecosystem, security issues introduced by third-party code cannot be overlooked. Among these security concerns, memory access vulnerabilities stand out prominently, leading to risks such as the theft or tampering of sensitive data. To address this issue, software-based defense mechanisms have been established at the programming language, compiler, and operating system levels. However, as a trade-off, these mechanisms significantly reduce software execution efficiency. Hardware-software co-design approaches have sought to either construct entirely isolated trusted execution environments or attempt to partition security domains within the same address space. While such approaches enhance efficiency compared to pure software methods, they also encounter challenges related to granularity of protection, performance overhead, and portability. In response to these challenges, we present the DASICS (Dynamic in-Address-Space Isolation by Code Segments) secure processor design, which offers dynamic and flexible security protection across multiple privilege levels, addressing data flow protection, control flow protection, and secure system calls. We have implemented hardware FPGA prototypes and software QEMU simulator prototypes based on DASICS, along with necessary modifications to system software for adaptability. We illustrate the protective mechanisms and effectiveness of DASICS with two practical examples and provide potential real-world use cases where DASICS could be applied.Comment: 16 pages, 6 figure

    Optimization of Preparation Process and E-nose Analysis of New-Paocai Non-thermal Osmosis Special Broth

    Get PDF
    In order to provide the special fermentation broth with traditional flavor for new-paocai permeation, in the investigation, six factors were selected including salt addition, bacterial inoculum, sucrose addition, fermentation temperature, mixed vegetable juice, and fermentation time for single-factor experiments. Furthermore, the Plackett-Burman and response surface experiments were used to optimized the prepared process and formulation of the fermentation broth. Results showed that, the following formula was included as follow (calculated by 1 L water): Tender ginger 10 g, ginger 10 g, garlic 10 g, onion 10 g, two fragrant leaves, one star anise, Sichuan pepper 2 g, table salt 40 g , rock sugar 40 g, millet pepper 40 g , Lactobacillus plantarum powder 0.54 g, mixed juice of vegetables (radish:tomato:celery:cabbage:cabbage:pepper=4:1.5:1.5:1.5) 40 g, respectively. Fermentation fluid could be obtained at anaerobic fermentation conditions at 30.5 ℃ for 51.4 h. The sensory score for this fermentation fluid was the highest, which was 92.47 percentage points. The pH of the fermentation broth produced under this formulation was relatively moderate at 3.11. Electronic nose analysis concluded that the main component of flavor peaked at 60 h. This study will provide a special fermentation solution formulation and corresponding technical reference for the industrialized green production of new-paocai

    B-Cell Receptor-Associated Protein 31 Regulates the Expression of Valosin-Containing Protein Through Elf2

    Get PDF
    Background/Aims: B-cell receptor-associated protein 31 (Bap31) is an evolutionarily conserved, ubiquitously expressed, polytopic integral membrane protein in the endoplasmic reticulum (ER) that is involved in the regulation of apoptosis, protein transport and degradation. Patients with Bap31 mutations exhibit symptoms similar to those exhibited by patients with central nervous system (CNS) diseases, such as deafness, dystonia, and intellectual disability. The present study aimed to investigate the function of Bap31 in CNS diseases by identifying a CNS disease-related gene regulated by Bap31 and exploring the underlying molecular mechanism. Methods: ShRNA-Bap31 and siRNA-Bap31 were used to knockdown Bap31 in N2a cells, and real-time PCR was performed to detect the mRNA levels of genes involved in CNS diseases. Western blot analyses were used to examine the protein levels of the candidate gene (valosin-containing protein, VCP) both in vivo and in vitro. The functions of Bap31 and VCP in mediating the degradation of the hyper-unstable mutant of cystic fibrosis trans-membrane conductance regulator (CFTRΔF508) were studied. Moreover, real-time PCR, Western blot and dual luciferase reporter analyses were conducted to investigate the molecular mechanism by which Bap31 regulates the expression levels of VCP. Results: VCP was identified as a candidate gene based on its differential expression in N2a cells following both shRNA- and siRNA-mediated knockdown of Bap31. Both the mRNA and protein levels of VCP were regulated by Bap31 in vivo and in vitro. In the ER-associated degradation (ERAD) pathway, Bap31 also regulated VCP expression and caused differences in the binding quantities of CFTRΔF508 and VCP. Furthermore, a transcription factor of VCP (E74-like factor 2, Elf2) was regulated by Bap31, and Elf2 mediated the changes in VCP transcription and expression in cells with altered Bap31 expression. Conclusion: These results indicate that Bap31 regulates the expression of VCP possibly via Elf2 and support the potential molecular function of Bap31 in CNS diseases

    Slowly rotating charged black holes in anti-de Sitter third order Lovelock gravity

    Full text link
    In this paper, we study slowly rotating black hole solutions in Lovelock gravity (n=3). These exact slowly rotating black hole solutions are obtained in uncharged and charged cases, respectively. Up to the linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the uncharged black holes get no corrections from rotation. In charged case, we compute magnetic dipole moment and gyromagnetic ratio of the black holes. It is shown that the gyromagnetic ratio keeps invariant after introducing the Gauss-Bonnet and third order Lovelock interactions.Comment: 14 pages, no figur

    Dbh+ catecholaminergic cardiomyocytes contribute to the structure and function of the cardiac conduction system in murine heart

    Get PDF
    The heterogeneity of functional cardiomyocytes arises during heart development, which is essential to the complex and highly coordinated cardiac physiological function. Yet the biological and physiological identities and the origin of the specialized cardiomyocyte populations have not been fully comprehended. Here we report a previously unrecognised population of cardiomyocytes expressing Dbhgene encoding dopamine beta-hydroxylase in murine heart. We determined how these myocytes are distributed across the heart by utilising advanced single-cell and spatial transcriptomic analyses, genetic fate mapping and molecular imaging with computational reconstruction. We demonstrated that they form the key functional components of the cardiac conduction system by using optogenetic electrophysiology and conditional cardiomyocyte Dbh gene deletion models. We revealed their close relationship with sympathetic innervation during cardiac conduction system formation. Our study thus provides new insights into the development and heterogeneity of the mammalian cardiac conduction system by revealing a new cardiomyocyte population with potential catecholaminergic endocrine function

    YeastFab:the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae

    Get PDF
    It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genetic elements as standardized biological parts, which can be used to assemble transcriptional units in a single-tube reaction. In addition, standardized characterization assays are developed using reporter constructs to calibrate the function of promoters. Furthermore, the assembled transcription units can be either assayed individually or applied to construct multi-gene metabolic pathways, which targets a genomic locus or a receiving plasmid effectively, through a simple in vitro reaction. Finally, using β-carotene biosynthesis pathway as an example, we demonstrate that our method allows us not only to construct and test a metabolic pathway in several days, but also to optimize the production through combinatorial assembly of a pathway using hundreds of regulatory biological parts
    • …
    corecore