38 research outputs found
All-optical wavelength-tunable narrow-linewidth fiber laser
Parameter regulations of narrow-linewidth fiber lasers in frequency domain
has drawn considerable interests for widespread applications in the light
quantum computing, precise coherent detection, and generation of micro-waves.
All-optical methods provide compact, precise and fast accesses to achieving
these lasers with wavelength-tunability. Here, the optical-thermal effects of
graphene is utilized to precisely control operations of free-running lasers
with a tuning speed of 140 MHz/ms. Assisted by the single-longitude-mode
operation and linewidth suppression of stimulated Brillouin backscattering, we
obtain an optical-controllable ~750 Hz fiber laser with a wavelength-tuning
range of 3.7 nm
Iterative Learning Control with Forgetting Factor for Urban Road Network
In order to improve the traffic condition, a novel iterative learning control (ILC) algorithm with forgetting factor for urban road network is proposed by using the repeat characteristics of traffic flow in this paper. Rigorous analysis shows that the proposed ILC algorithm can guarantee the asymptotic convergence. Through iterative learning control of the traffic signals, the number of vehicles on each road in the network can gradually approach the desired level, thereby preventing oversaturation and traffic congestion. The introduced forgetting factor can effectively adjust the control input according to the states of the system and filter along the direction of the iteration. The results show that the forgetting factor has an important effect on the robustness of the system. The theoretical analysis and experimental simulations are given to verify the validity of the proposed method
Forager and farmer evolutionary adaptations to malaria evidenced by 7000 years of thalassemia in Southeast Asia
Thalassemias are inherited blood disorders that are found in high prevalences in the Mediterranean, Southeast Asia and the Pacific. These diseases provide varying levels of resistance to malaria and are proposed to have emerged as an adaptive response to malaria in these regions. The transition to agriculture in the Holocene has been suggested to have influenced the selection for thalassemia in the Mediterranean as land clearance for farming encouraged interaction between Anopheles mosquitos, the vectors for malaria, and human groups. Here we document macroscopic and microscopic skeletal evidence for the presence of thalassemia in both hunter-gatherer (Con Co Ngua) and early agricultural (Man Bac) populations in northern Vietnam. Firstly, our findings demonstrate that thalassemia emerged prior to the transition to agriculture in Mainland Southeast Asia, from at least the early seventh millennium BP, contradicting a long-held assumption that agriculture was the main driver for an increase in malaria in Southeast Asia. Secondly, we describe evidence for significant malarial burden in the region during early agriculture. We argue that the introduction of farming into the region was not the initial driver of the selection for thalassemia, as it may have been in other regions of the world
Forager and farmer evolutionary adaptations to malaria evidenced by 7000 years of thalassemia in Southeast Asia
Acknowledgements We would like to thank Dr. Ngo Anh Son, Mr. Bui Van Khanh and Ms. Nellissa Ling for their assistance with the radiographs. We are grateful to Dr. Dr. Nguyen Gia Doi for permission to extract histological samples. This work was supported by a National Geographic Early Career Grant (EC-54332R-18);Royal Society of New Zealand Skinner Fund Grant; University of Otago Doctoral Scholarship; Australian Research Council DP110101097 and FT120100299. Histologicalprocessing was funded by the Australian Research Council (DE190100068).Peer reviewedPublisher PD
Forager and farmer evolutionary adaptations to malaria evidenced by 7000 years of thalassemia in Southeast Asia.
Funder: Royal Society of New Zealand Skinner FundFunder: University of Otago Doctoral ScholarshipThalassemias are inherited blood disorders that are found in high prevalences in the Mediterranean, Southeast Asia and the Pacific. These diseases provide varying levels of resistance to malaria and are proposed to have emerged as an adaptive response to malaria in these regions. The transition to agriculture in the Holocene has been suggested to have influenced the selection for thalassemia in the Mediterranean as land clearance for farming encouraged interaction between Anopheles mosquitos, the vectors for malaria, and human groups. Here we document macroscopic and microscopic skeletal evidence for the presence of thalassemia in both hunter-gatherer (Con Co Ngua) and early agricultural (Man Bac) populations in northern Vietnam. Firstly, our findings demonstrate that thalassemia emerged prior to the transition to agriculture in Mainland Southeast Asia, from at least the early seventh millennium BP, contradicting a long-held assumption that agriculture was the main driver for an increase in malaria in Southeast Asia. Secondly, we describe evidence for significant malarial burden in the region during early agriculture. We argue that the introduction of farming into the region was not the initial driver of the selection for thalassemia, as it may have been in other regions of the world
Model Predictive Direct Torque Control for SPMSM with Load Angle Limitation
Abstract—The purpose of this paper is to describe a model predictive direct torque control (MPDTC) with load angle limitation for surface-mounted permanent magnet synchronous motor (SPMSM) drive system. In this paper, an exact discrete-time state-space model of SPMSM is presented, which improves the state prediction accuracy comparing to simple Euler approximation. A finite control set type MPDTC is used to select the optimum voltage vectors applying to the voltage source inverter (VSI). It makes full use of the inherent discrete nature of VSI, and according to the predefined cost function it chooses the optimal solution from the possible switching states. It has been found that with the proposed scheme SPMSM drives show adequate dynamic torque performance and considerable torque ripple reduction as compared to traditional direct torque control (t-DTC). With the load angle limitation in the cost function, the proposed scheme can prevent the PMSMs falling from synchronism. 1
Alkali Metal Cations as Charge-Transfer Bridge for Polarization Promoted Solar-to-H2 Conversion
Utilization of spontaneous polarization electric field of ferroelectric materials to realize the spatial separation and fast transfer of photogenerated charges has been regarded as a promising strategy to fabricate highly efficient photocatalysts. Herein, a novel heterostructure is constructed by coupling potassium poly(heptazine imide) (K-PHI) with ferroelectric BaxSr1-xTiO3 (BxST) through a facile electrostatic self-assembly strategy. The ionic species of K-PHI can neutralize the polarized charges in BxST to form intimate interfacial contact, substantially boosting the internal electric field. Notably, K+ cations intercalated into K-PHI act as charge-transfer bridge to promote migration and separation of photogenerated charge carriers. As a result, a significantly improved H2-evolution rate of 1087.4 µmol h−1 g−1 with an apparent quantum yield (AQY) of 8.05% at 420 nm is achieved over 5% K-PHI/B0.8ST, standing among the best polymeric carbon nitride-based photocatalysts reported up to date. Moreover, the extreme stability of the catalysts is evidenced by remaining outstanding catalytic performance even after storage for half a year. This strategy can be extended to other alkali metal (Na+ and Cs+) modified polymeric materials, highlighting the key role of the bridging ions in constructing polarized heterostructure, which sheds light on the design of ferroelectric-assisted photocatalysts