206 research outputs found

    An Android-Based Mechanism for Energy Efficient Localization Depending on Indoor/Outdoor Context

    Get PDF
    Today, there is widespread use of mobile applications that take advantage of a user\u27s location. Popular usages of location information include geotagging on social media websites, driver assistance and navigation, and querying nearby locations of interest. However, the average user may not realize the high energy costs of using location services (namely the GPS) or may not make smart decisions regarding when to enable or disable location services-for example, when indoors. As a result, a mechanism that can make these decisions on the user\u27s behalf can significantly improve a smartphone\u27s battery life. In this paper, we present an energy consumption analysis of the localization methods available on modern Android smartphones and propose the addition of an indoor localization mechanism that can be triggered depending on whether a user is detected to be indoors or outdoors. Based on our energy analysis and implementation of our proposed system, we provide experimental results-monitoring battery life over time-and show that an indoor localization method triggered by indoor or outdoor context can improve smartphone battery life and, potentially, location accuracy

    A quantum-inspired tensor network method for constrained combinatorial optimization problems

    Full text link
    Combinatorial optimization is of general interest for both theoretical study and real-world applications. Fast-developing quantum algorithms provide a different perspective on solving combinatorial optimization problems. In this paper, we propose a quantum inspired algorithm for general locally constrained combinatorial optimization problems by encoding the constraints directly into a tensor network state. The optimal solution can be efficiently solved by borrowing the imaginary time evolution from a quantum many-body system. We demonstrate our algorithm with the open-pit mining problem numerically. Our computational results show the effectiveness of this construction and potential applications in further studies for general combinatorial optimization problems

    The current opportunities and challenges of Web 3.0

    Full text link
    With recent advancements in AI and 5G technologies,as well as the nascent concepts of blockchain and metaverse,a new revolution of the Internet,known as Web 3.0,is emerging. Given its significant potential impact on the internet landscape and various professional sectors,Web 3.0 has captured considerable attention from both academic and industry circles. This article presents an exploratory analysis of the opportunities and challenges associated with Web 3.0. Firstly, the study evaluates the technical differences between Web 1.0, Web 2.0, and Web 3.0, while also delving into the unique technical architecture of Web 3.0. Secondly, by reviewing current literature, the article highlights the current state of development surrounding Web 3.0 from both economic and technological perspective. Thirdly, the study identifies numerous research and regulatory obstacles that presently confront Web 3.0 initiatives. Finally, the article concludes by providing a forward-looking perspective on the potential future growth and progress of Web 3.0 technology

    Deep Convolutional Pooling Transformer for Deepfake Detection

    Full text link
    Recently, Deepfake has drawn considerable public attention due to security and privacy concerns in social media digital forensics. As the wildly spreading Deepfake videos on the Internet become more realistic, traditional detection techniques have failed in distinguishing between real and fake. Most existing deep learning methods mainly focus on local features and relations within the face image using convolutional neural networks as a backbone. However, local features and relations are insufficient for model training to learn enough general information for Deepfake detection. Therefore, the existing Deepfake detection methods have reached a bottleneck to further improve the detection performance. To address this issue, we propose a deep convolutional Transformer to incorporate the decisive image features both locally and globally. Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy. Moreover, we employ the barely discussed image keyframes in model training for performance improvement and visualize the feature quantity gap between the key and normal image frames caused by video compression. We finally illustrate the transferability with extensive experiments on several Deepfake benchmark datasets. The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.Comment: Accepted to be published in ACM TOM

    High-dimensional Clustering onto Hamiltonian Cycle

    Full text link
    Clustering aims to group unlabelled samples based on their similarities. It has become a significant tool for the analysis of high-dimensional data. However, most of the clustering methods merely generate pseudo labels and thus are unable to simultaneously present the similarities between different clusters and outliers. This paper proposes a new framework called High-dimensional Clustering onto Hamiltonian Cycle (HCHC) to solve the above problems. First, HCHC combines global structure with local structure in one objective function for deep clustering, improving the labels as relative probabilities, to mine the similarities between different clusters while keeping the local structure in each cluster. Then, the anchors of different clusters are sorted on the optimal Hamiltonian cycle generated by the cluster similarities and mapped on the circumference of a circle. Finally, a sample with a higher probability of a cluster will be mapped closer to the corresponding anchor. In this way, our framework allows us to appreciate three aspects visually and simultaneously - clusters (formed by samples with high probabilities), cluster similarities (represented as circular distances), and outliers (recognized as dots far away from all clusters). The experiments illustrate the superiority of HCHC

    Towards Generalizable Deepfake Detection by Primary Region Regularization

    Full text link
    The existing deepfake detection methods have reached a bottleneck in generalizing to unseen forgeries and manipulation approaches. Based on the observation that the deepfake detectors exhibit a preference for overfitting the specific primary regions in input, this paper enhances the generalization capability from a novel regularization perspective. This can be simply achieved by augmenting the images through primary region removal, thereby preventing the detector from over-relying on data bias. Our method consists of two stages, namely the static localization for primary region maps, as well as the dynamic exploitation of primary region masks. The proposed method can be seamlessly integrated into different backbones without affecting their inference efficiency. We conduct extensive experiments over three widely used deepfake datasets - DFDC, DF-1.0, and Celeb-DF with five backbones. Our method demonstrates an average performance improvement of 6% across different backbones and performs competitively with several state-of-the-art baselines.Comment: 12 pages. Code and Dataset: https://github.com/xaCheng1996/PRL

    Robust Identity Perceptual Watermark Against Deepfake Face Swapping

    Full text link
    Notwithstanding offering convenience and entertainment to society, Deepfake face swapping has caused critical privacy issues with the rapid development of deep generative models. Due to imperceptible artifacts in high-quality synthetic images, passive detection models against face swapping in recent years usually suffer performance damping regarding the generalizability issue. Therefore, several studies have been attempted to proactively protect the original images against malicious manipulations by inserting invisible signals in advance. However, the existing proactive defense approaches demonstrate unsatisfactory results with respect to visual quality, detection accuracy, and source tracing ability. In this study, we propose the first robust identity perceptual watermarking framework that concurrently performs detection and source tracing against Deepfake face swapping proactively. We assign identity semantics regarding the image contents to the watermarks and devise an unpredictable and unreversible chaotic encryption system to ensure watermark confidentiality. The watermarks are encoded and recovered by jointly training an encoder-decoder framework along with adversarial image manipulations. Extensive experiments demonstrate state-of-the-art performance against Deepfake face swapping under both cross-dataset and cross-manipulation settings.Comment: Submitted for revie
    corecore