23 research outputs found

    Humanoid Robot Cooperative Motion Control Based on Optimal Parameterization

    Get PDF
    The implementation of low-energy cooperative movements is one of the key technologies for the complex control of the movements of humanoid robots. A control method based on optimal parameters is adopted to optimize the energy consumption of the cooperative movements of two humanoid robots. A dynamic model that satisfies the cooperative movements is established, and the motion trajectory of two humanoid robots in the process of cooperative manipulation of objects is planned. By adopting the control method with optimal parameters, the parameters optimization of the energy consumption index function is performed and the stability judgment index of the robot in the movement process is satisfied. Finally, the effectiveness of the method is verified by simulations and experimentations

    Learning Enhanced Resolution-wise features for Human Pose Estimation

    Full text link
    Recently, multi-resolution networks (such as Hourglass, CPN, HRNet, etc.) have achieved significant performance on pose estimation by combining feature maps of various resolutions. In this paper, we propose a Resolution-wise Attention Module (RAM) and Gradual Pyramid Refinement (GPR), to learn enhanced resolution-wise feature maps for precise pose estimation. Specifically, RAM learns a group of weights to represent the different importance of feature maps across resolutions, and the GPR gradually merges every two feature maps from low to high resolutions to regress final human keypoint heatmaps. With the enhanced resolution-wise features learnt by CNN, we obtain more accurate human keypoint locations. The efficacies of our proposed methods are demonstrated on MS-COCO dataset, achieving state-of-the-art performance with average precision of 77.7 on COCO val2017 set and 77.0 on test-dev2017 set without using extra human keypoint training dataset.Comment: Published on ICIP 202

    Protective Effects of Total Glycoside From Rehmannia glutinosa Leaves on Diabetic Nephropathy Rats via Regulating the Metabolic Profiling and Modulating the TGF-β1 and Wnt/β-Catenin Signaling Pathway

    Get PDF
    Rehmannia glutinosa Libosch (RG), is officially listed in the Chinese Pharmacopoeia and is widely used in China. The leaves of RG (LR) is an important vegetative organ of the plant. At present, the total glycosides of RG (TLR) were extracted from RG, and developed a national second class of new drugs to the Dihuangye total glycoside capsule (DTG). Additionally, DTG has the effect of nourishing yin and tonifying kidney, promoting blood circulation and blood cooling, and applicable to chronic glomerulonephritis mild to Qi and Yin Deficiency. Moreover, diabetic nephropathy (DN) rats model was induced by intraperitoneal injection of a small dose of streptozotocin (45 mg/kg) and high-fat diet and plus 5% glucose drinking water. Over 15 days, after oral administration TLR and DTG in DN rats, samples from serum, urine and kidney were collected for biochemical indicators measurements, pathological analysis, western blotting and metabolomics. Therefore, the analytical results of biochemical indicators, histopathological observations and western blotting showed that TLR and DTG exhibited a significant effect in renal protection. And 27 endogenous metabolites (12 in serum and 15 in urine) could be tentatively identified in the process of DN in rats using metabolomics method. Those endogenous metabolites were chiefly involved in sphingolipid metabolism; pentose, glucuronate interconversion; terpenoid backbone biosynthesis; purine metabolism and retinol metabolism. After drug intervention, these endogenous metabolites turned back to normal level some extent (P < 0.05). Furthermore, TLR and DTG prevent high glucose-induced glomerular mesangial cells (GMCs) by inhibiting TGF-β1 and Wnt/β-catenin signaling pathway, providing a powerful supports to develop a new therapeutic agent for DN. This study paved the way for further exploration of the pathogenesis of DN, early diagnosis and the evaluation of curative effect

    Radar Emitter Signal Identification Based on Weighted Normalized Singular-value Decomposition

    No full text
    With the continuous advancement of modern technology, more types of radar and related technologies are continuously being developed, and the identification of radar emitter signals has gradually become a very important research field. This paper focuses on the identification of modulation types in radar emitter signal identification. We propose a weighted normalized Singular-Value Decomposition (SVD) feature extraction algorithm, which is based on the perspective of data energy and SVD. The filtering effect of complex SVD is analyzed, as well as the influence of the number of rows of data matrix on the decomposition results, and the recognition effect of different classification models. The experimental results show that the algorithm has better filtering and recognition effects on common radar signals. Under –20 dB, the cosine similarity values of the reconstructed and original signals remain at about 0.94, and the recognition accuracy remains above 97% under a confidence level of 0.65. In addition, experiments show that the weighted normalized SVD feature extraction algorithm has better robustness than the traditional Principal Component Analysis (PCA) algorithm

    A Barrage Jamming Strategy Based on CRB Maximization against Distributed MIMO Radar

    No full text
    Distributed multiple input multiple output (MIMO) radar has attracted much attention for its improved detection and estimation performance as well as enhanced electronic counter-counter measures (ECCM) ability. To protect the target from being detected and tracked by such radar, we consider a barrage jamming strategy towards a distributed MIMO. We first derive the Cramer−Rao bound (CRB) of target parameters estimation using a distributed MIMO under barrage jamming environments. We then set maximizing the CRB as the criterion for jamming resource allocation, aiming at degrading the accuracy of target parameters estimation. Due to the non-convexity of the CRB maximizing problem, particle swarm optimization is used to solve the problem. Simulation results demonstrate the advantages of the proposed strategy over traditional jamming methods

    Metabolomic Analysis of Biochemical Changes in the Serum and Urine of Freund’s Adjuvant-Induced Arthritis in Rats after Treatment with Silkworm Excrement

    No full text
    Silkworm excrement (SE), is used as a traditional antirheumatic medicine in China. The present study was designed to investigate the therapeutic efficacy of water fraction of SE (ST) and ethanol fraction of SE (CT) at two different doses on adjuvant induced arthritis (AA) rats. Arthritis severity was evaluated by body weight, paw thickness, histological changes and index of paws oedema and spleen. Serum samples were collected for estimation of biochemical indicators and cytokines. In addition, a metabonomic method based on the ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) had been established to investigate the holistic efficacy of SE by serum and urine. Multivariate statistical approaches, such as partial least-squares discriminant analysis (PLS-DA) and orthogonal projection to latent structures squares-discriminant analysis (OPLS-DA) were built to evaluate the therapeutic effects of SE and find potential biomarkers and metabolic pathways. Administration with SE significantly ameliorated the AA severity, including body weight loss, paw swelling, histological changes and the levels of biochemical index. 33 endogenous metabolites had been identified (10 in serum and 23 in urine) in the AA rats. Urinary and serum metabolic profiling revealed that the metabolites underpin the metabolic pathway including nicotinate and nicotinamide metabolism; pentose and glucuronate interconversions; TCA cycle; beta-Alanine metabolism; purine metabolism and glycolysis or gluconeogenesis. The altered metabolites could be regulated closer to normal level after SE intervention. The results suggested SE possesses substantial anti-arthritic activity and demonstrated that metabonomics is a powerful tool to gain insight in the mechanism of SE formula in therapy

    Driving Behavior and Decision Mechanisms in Emergency Conditions

    No full text
    In this article we used simulator experiments to explore the intelligent mechanisms of human decision-making. Three types of typical emergency scenarios were used in the experiment, in which Scenario 1 was used to analyze the driver’s choice to protect themselves or to protect pedestrians in emergency situations. Scenario 2 was compared with Scenario 1 to verify whether the driver’s avoidance behavior to protect pedestrians was instinctive or selective. Scenario 3 was to verify whether the driver would follow the principle of damage minimization. The driver’s decisions and actions in emergency situations, from the cumulative frequency of time to collision (TTC) to the maximum steering wheel angle rate during the experiments, were recorded. The results show that the driver was not just instinctively avoiding the immediate obstacle, but more selectively protecting pedestrians. At the same time, the time taken up by the driver’s instinctive avoidance response also had a negative impact on decision-making. The actual decisions of the driver were analyzed to provide a basis for building up the ethical decision-making of autonomous vehicles
    corecore