6 research outputs found

    A computational study of mechanical behavior of bioresorbable polymeric stents

    Get PDF
    Coronary artery disease (CAD) is a leading killer of human life worldwide. Clinically, stent implantation with percutaneous coronary intervention has become a standard and effective method to treat coronary artery disease. A large amount of research work has been carried out to investigate the mechanical, degradation and fatigue behavior for permanent metallic stents, but not for bioresorbable polymeric stents. Such research gaps are urgently required to be addressed, as bioresorbable polymeric stents are regarded as the next generation medical devices, even replacing metallic stents. In this thesis, pioneering efforts have been made to systematically study the mechanical behavior of polymeric stents using finite element method, which are novel and have not been reported in literature yet. [Continues.

    Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends

    Get PDF
    Background Significant amount of research, both experimental and numerical, has been conducted to study the mechanical behaviour of biodegradable polymer PL(L)A due to its wide range of applications. However, mechanical brittleness or poor elongation of PL(L)A has limited its applications considerably, particularly in the biomedical field. This study aims to study the potential in improving the ductility of PLA by blending with PBS in varied weight ratios. Methods The preparation of PLA and PBS blends, with various weight ratios, was achieved by melting and mixing technique at high temperature using HAAKEâ„¢ Rheomix OS Mixer. Differential Scanning Calorimetry (DSC) was applied to investigate the melting behaviour, crystallization and miscibility of the blends. Small dog-bone specimens, produced by compression moulding, were used to test mechanical properties under uniaxial tension. Moreover, an advanced viscoplastic model with nonlinear hardening variables was applied to simulate rate-dependent plastic deformation of PLA/PBS blends, with model parameters calibrated simultaneously against the tensile test data. Results Optical Microscopy showed that PBS composition aid with the crystallization of PLA. The elongation of PLA/PBS blends increased with the increase of PBS content, but with a compromise of tensile modulus and strength. An increase of strain rate led to enhanced stress response, demonstrating the time-dependent deformation nature of the material. Model simulations of time-dependent plastic deformation for PLA/PBS blends compared well with experimental results. Conclusions The crystallinity of PLA/PBS blends increased with the addition of PBS content. The brittleness of pure PLA can be improved by blending with ductile PBS using mechanical mixing technique, but with a loss of stiffness and strength. The tensile tests at different strain rates confirmed the time-dependent plastic deformation nature of the blends, i.e., viscoplasticity, which can be simulated by the Chaboche viscoplastic model with nonlinear hardening variables

    Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends

    Get PDF
    Background Significant amount of research, both experimental and numerical, has been conducted to study the mechanical behaviour of biodegradable polymer PL(L)A due to its wide range of applications. However, mechanical brittleness or poor elongation of PL(L)A has limited its applications considerably, particularly in the biomedical field. This study aims to study the potential in improving the ductility of PLA by blending with PBS in varied weight ratios. Methods The preparation of PLA and PBS blends, with various weight ratios, was achieved by melting and mixing technique at high temperature using HAAKEâ„¢ Rheomix OS Mixer. Differential Scanning Calorimetry (DSC) was applied to investigate the melting behaviour, crystallization and miscibility of the blends. Small dog-bone specimens, produced by compression moulding, were used to test mechanical properties under uniaxial tension. Moreover, an advanced viscoplastic model with nonlinear hardening variables was applied to simulate rate-dependent plastic deformation of PLA/PBS blends, with model parameters calibrated simultaneously against the tensile test data. Results Optical Microscopy showed that PBS composition aid with the crystallization of PLA. The elongation of PLA/PBS blends increased with the increase of PBS content, but with a compromise of tensile modulus and strength. An increase of strain rate led to enhanced stress response, demonstrating the time-dependent deformation nature of the material. Model simulations of time-dependent plastic deformation for PLA/PBS blends compared well with experimental results. Conclusions The crystallinity of PLA/PBS blends increased with the addition of PBS content. The brittleness of pure PLA can be improved by blending with ductile PBS using mechanical mixing technique, but with a loss of stiffness and strength. The tensile tests at different strain rates confirmed the time-dependent plastic deformation nature of the blends, i.e., viscoplasticity, which can be simulated by the Chaboche viscoplastic model with nonlinear hardening variables

    A computational study of mechanical performance of bioresorbable polymeric stents with design variations

    Get PDF
    Purpose: The study compared the mechanical behavior of bioresorbable polymeric stents with various designs during deployment, and investigated their fatigue performance under pulsatile blood pressure loading. Methods: Finite element simulations have been carried out to compare the mechanical performance of four bioresorbable polymeric stents, i.e., Absorb, Elixir, Igaki-Tamai and RevaMedical, during deployment in diseased artery. Tri-folded balloon was modelled to expand the crimped stent onto the three-layered arterial wall with plaque. Cyclic diastolic-systolic pressure loading was applied to both stent and arterial wall to study fatigue behavior. Results: Stents with larger U-bend and longer axial strut demonstrate more flexibility but suffer from severe dogboning and recoiling effects. Stress concentrations in the stent, as well as in the plaque and artery, are higher for stents designed with increased rigidity such as those with smaller U-bends and shorter axial struts. Simulations of fatigue deformation for Elixir stent demonstrate that the U-bends, with high stress concentrations, have a potential risk of fatigue failure under pulsatile systolic-diastolic blood pressure as opposed to the counter metallic stents which are normally free of fatigue failure. Conclusion: The structural behaviour of bioresorbable polymeric stent is strongly affected by its design, in terms of expansion, dogboing, recoiling and stress distribution during the deployment process

    Effect of two-year degradation on mechanical interaction between a bioresorbable scaffold and blood vessel

    Get PDF
    This paper aims to evaluate the mechanical behaviour of a bioresorbable polymeric coronary scaffold using finite element method, focusing on scaffold-artery interaction during degradation and vessel remodelling. A series of nonlinear stress-strain responses was constructed to match the experimental measurement of radial stiffness and strength for polymeric scaffolds over 2-year in-vitro degradation times. Degradation process was modelled by incorporating the change of material property as a function of time. Vessel remodelling was realised by changing the size of artery-plaque system manually, according to the clinical data in literature. Over degradation times, stress on the scaffold tended to increase firstly and then decreased gradually, corresponding to the changing yield stress of the scaffold material; whereas the stress on the plaque and arterial layers showed a continuous decrease. In addition, stress reduction was also observed for scaffold, plaque and artery in the simulations with the consideration of vessel remodelling. For the first time, the work offered insights into mechanical interaction between a bioresorbable scaffold and blood vessel during two-year in-vitro degradation, which has significance in assisting with further development of bioresorbable implants for treating cardiovascular diseases

    Characterization and application of aggregated porous copper oxide flakes for cupric source of copper electrodeposition

    Get PDF
    Copper oxide was prepared with thermal decomposition of basic copper carbonate to complement the concentration of cupric ions for copper electrodeposition in a plating system with insoluble anode. Copper oxide particles with a structure of aggregated porous flakes had a wide size distribution ranging from 100 nm to 100 μm. Copper oxide exhibited a dissolution rate of about 15 s in 12.5 vol% H2SO4 solution. During copper electrodeposition, copper deposits with fine growth formed in the electrolyte with stable cupric concentration provided by rapid dissolution of copper oxide
    corecore