27 research outputs found

    FSUIE: A Novel Fuzzy Span Mechanism for Universal Information Extraction

    Full text link
    Universal Information Extraction (UIE) has been introduced as a unified framework for various Information Extraction (IE) tasks and has achieved widespread success. Despite this, UIE models have limitations. For example, they rely heavily on span boundaries in the data during training, which does not reflect the reality of span annotation challenges. Slight adjustments to positions can also meet requirements. Additionally, UIE models lack attention to the limited span length feature in IE. To address these deficiencies, we propose the Fuzzy Span Universal Information Extraction (FSUIE) framework. Specifically, our contribution consists of two concepts: fuzzy span loss and fuzzy span attention. Our experimental results on a series of main IE tasks show significant improvement compared to the baseline, especially in terms of fast convergence and strong performance with small amounts of data and training epochs. These results demonstrate the effectiveness and generalization of FSUIE in different tasks, settings, and scenarios.Comment: ACL202

    Robustness Over Time: Understanding Adversarial Examples' Effectiveness on Longitudinal Versions of Large Language Models

    Full text link
    Large Language Models (LLMs) have led to significant improvements in many tasks across various domains, such as code interpretation, response generation, and ambiguity handling. These LLMs, however, when upgrading, primarily prioritize enhancing user experience while neglecting security, privacy, and safety implications. Consequently, unintended vulnerabilities or biases can be introduced. Previous studies have predominantly focused on specific versions of the models and disregard the potential emergence of new attack vectors targeting the updated versions. Through the lens of adversarial examples within the in-context learning framework, this longitudinal study addresses this gap by conducting a comprehensive assessment of the robustness of successive versions of LLMs, vis-\`a-vis GPT-3.5. We conduct extensive experiments to analyze and understand the impact of the robustness in two distinct learning categories: zero-shot learning and few-shot learning. Our findings indicate that, in comparison to earlier versions of LLMs, the updated versions do not exhibit the anticipated level of robustness against adversarial attacks. In addition, our study emphasizes the increased effectiveness of synergized adversarial queries in most zero-shot learning and few-shot learning cases. We hope that our study can lead to a more refined assessment of the robustness of LLMs over time and provide valuable insights of these models for both developers and users

    Job burnout among primary healthcare workers during COVID-19 pandemic: cross-sectional study in China

    Get PDF
    ObjectiveThis study evaluated job burnout among primary healthcare workers (PHCWs) in China during the COVID-19 pandemic, explored its influencing factors, and examined PHCWs' preferences for reducing job burnout.MethodWe conducted a multicenter cross-sectional study in Heilongjiang, Sichuan, Anhui, Gansu, and Shandong Provinces. An electronic questionnaire survey was conducted through convenience sampling in communities from May to July 2022. We collected sociodemographic characteristics, job burnout level, job satisfaction, and preferred ways to reduce job burnout among PHCWs.ResultsThe job burnout rate among PHCWs in China was 59.87% (937/1565). Scores for each dimension of job burnout were lower among PHCWs who had a better work environment (emotional exhaustion OR: 0.60; depersonalization OR: 0.73; personal accomplishment OR: 0.76) and higher professional pride (emotional exhaustion OR: 0.63; depersonalization OR: 0.70; personal accomplishment OR: 0.44). PHCWs with higher work intensity (emotional exhaustion OR: 2.37; depersonalization OR: 1.34; personal accomplishment OR: 1.19) had higher scores in all job burnout dimensions. Improving work environments and raising salaries were the preferred ways for PHCWs to reduce job burnout.ConclusionStrategies should be developed to improve job satisfaction among PHCWs, enhance their professional identity, and alleviate burnout to ensure the effective operation of the healthcare system, especially during periods of overwork

    A compendium of genetic regulatory effects across pig tissues

    Get PDF
    The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.</p

    Designing Colloidal Nanomaterials for Electronic and Optoelectronic Devices through Surface Modification

    Get PDF
    Colloidal quantum dots (QDs) are nanometer-sized semiconductors synthesized by wet chemical methods and stabilized by surface ligands in solvents. They are prized for the size-dependent electronic band structures, giving rise to tunable optical properties. Their solution form is also suitable for large-area and low-cost fabrication processes. These unique characteristics make this class of materials promising as building blocks for next-generation thin-film electronic and optoelectronic devices. However, the construction of QD based devices requires precise control of their material properties, including carrier mobility, lifetime, doping concentration and energy positions of the conduction and valence band edges. The large surface-to-volume ratio allows these properties to be manipulated through surface modification of QDs. In this thesis, we systematically study the effect of surface treatments, such as ligand exchange, surface passivation, remote doping, on the chemical and physical properties of QD dispersions and thin films. We design surface modified QDs with desirable characteristics and integrate them into QD based devices, including field-effect transistors (FETs), solar cells and photodetectors to enhance device performance. We design QD thin films with specific surface treatments to improve two important interfaces in PbS QD solar cells. By introducing a CdI2-treated CdSe QD buffer layer at the ZnO nanoparticle/PbS QD junction interface and improving the p-type doping of the ethanedithiol-PbS QD layer via sulfur enrichment at the back-contact interface, we aim at suppressing interface recombination and facilitating carrier extraction. The ionization of dopants added on the surface of nanostructures during remote doping is inefficient. Both experimentally and theoretically, we study the effect of dielectric confinement on the doping efficiency in PbSe nanowires. On the FET platform, we show improved doping efficiency by encapsulating the nanowires with high-dielectric media to reduce dielectric mismatch between them. We further study the synthesis and surface chemistry of III-V QDs. We develop a general route to prepare InP, InAs, InSb and InAsxSb1−x QDs based on the co-reduction of indium and pnictogen halide precursors. This simplifies the preparation and enhances the stability of V precursors compared to existing approaches. We develop ligand exchange and doping strategies for III-V QD thin films to fabricate high performance devices

    Effect of Zn Content on the Microstructure and Mechanical Properties of Mg–Al–Sn–Mn Alloys

    No full text
    High performance Mg&ndash;6Al&ndash;3Sn&ndash;0.25Mn&ndash;xZn alloys (x = 0, 0.5, 1.0, 1.5, and 2.0 wt %) without rare earth were designed. The effects of different Zn contents on the microstructure and mechanical properties were systematically investigated. The addition of Zn obviously refines the as-cast alloys dendritic structure because of the increase in the number in the second phase. For the as-extruded alloys, an appropriate amount of Zn promotes complete recrystallization, thus increasing the grain size. As the Zn content increases, the texture gradually evolves into a typical strong basal texture, which means that the basal slip is difficult to initiate. Meanwhile, the addition of Zn promotes the precipitation of small-sized second phases, which can hinder the dislocation movement. The combination of texture strengthening and precipitation strengthening is the main reason for the improvement of alloys&rsquo; strength

    A High Resolution MCML-based Time-to-Digital Converter Implementation

    No full text
    A new high-resolution time-to-digital converter (TDC) architecture based on MOS-Current-Mode-Logic (MCML) is described. Aiming at high resolution and large dynamic range, the prototype is implemented with 0:13 μm CMOS technology. A time domain resolution of 10:6 ps and a respectively large dynamic range of 100 ns was achieved. A switched MCML active load for variable resolution and dynamic range capability is described

    Design and Control of a Series&ndash;Parallel Elastic Actuator for a Weight-Bearing Exoskeleton Robot

    No full text
    Weight-bearing exoskeletons are robots that need to carry loads and interact with humans frequently. Therefore, the actuators of these exoskeletons are supposed to be capable of outputting sufficient force with high compliance and little weight. A series&ndash;parallel elastic actuator (SPEA) is designed, in this work, to meet the demanding requirements of an exoskeleton robot called PALExo. A gas spring is installed in parallel with an electric cylinder to adjust the force output range of the actuator according to the needs of the exoskeleton. A series elastic module (SEM) is installed in series with the electric cylinder and gas spring to improve the compliance of the actuator, the stiffness of which is variable to adapt to the different stiffness requirements of the exoskeleton&rsquo;s legs in the standing phase and swinging phase. A force controller combining dynamic compensation and a cascade control with an inner velocity loop and a disturbance observer is designed for the SPEA. The performance of the force controller is verified by experiments and the results demonstrate that the controller has good adaptability to the stiffness of the SEM

    Modular Robotic Limbs for Astronaut Activities Assistance

    No full text
    In order to meet the assist requirements of extravehicular activity (EVA) for astronauts, such as moving outside the international space station (ISS) or performing on-orbit tasks by a single astronaut, this paper proposes an astronaut robotic limbs system (AstroLimbs) for extravehicular activities assistance. This system has two robotic limbs that can be fixed on the backpack of the astronaut. Each limb is composed of several basic module units with identical structure and function, which makes it modularized and reconfigurable. The robotic limbs can work as extra arms of the astronaut to assist them outside the space station cabin. In this paper, the robotic limbs are designed and developed. The reinforcement learning method is introduced to achieve autonomous motion planning capacity for the robot, which makes the robot intelligent enough to assist the astronaut in unstructured environment. In the meantime, the movement of the robot is also planned to make it move smoothly. The structure scene of the ISS for extravehicular activities is modeled in a simulation environment, which verified the effectiveness of the proposed method

    Composition Optimization and Mechanical Properties of Mg-Al-Sn-Mn Alloys by Orthogonal Design

    No full text
    Nine kinds of rare-earth free Mg-Al-Sn-Mn magnesium alloys were designed by orthogonal method. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and tension tests were carried out to investigate the microstructures and mechanical properties. As-cast Mg-Al-Sn-Mn alloys have an obvious dendritic structure that is composed of &alpha;-Mg, Mg17Al12, and Mg2Sn phases. After hot extrusion, the cast dendrite structure changed into a recrystallized equiaxed grain. Mg17Al12 dissolved completely into a matrix, and only &alpha;-Mg, Mg2Sn, and a few Al-Mn phases could be observed. The influence of three alloy elements (Al, Sn, and Mn) on grain size, texture intensity, ultimate tensile strength (UTS), tensile yield strength (TYS), and elongation (EL) were studied by extreme difference analysis method. The content of Mn had the greatest influence on grain size. The AT61-0.2Mn and AT73-0.2Mn alloys had the smallest grain, reaching 6.8 &mu;m. The content of Al had the greatest influence on the strength; therefore, the AT73-0.2Mn alloy had the highest UTS, 322 MPa, and TYS, 202 MPa. The content of Sn had the greatest influence on elongation. The AT52-0.4Mn alloy had the highest elongation in theory, but it was not included in the nine designed kinds of alloys yet. AT52-0.2Mn alloy had the highest elongation in the nine alloys (28.4%)
    corecore