46 research outputs found

    Double threshold authentication using body area radio channel characteristics

    Get PDF
    The demand of portable and body-worn devices for remote health monitoring is ever increasing. One of the major challenges caused by this influx of wireless body area network (WBAN) devices is security of user's extremely vital and personal information. Conventional authentication techniques implemented at upper layers of the Open System Interconnection (OSI) model usually consumes huge amount of power. They also require significant changes at hardware and software levels. It makes them unsuitable for inherently low powered WBAN devices. This letter investigates the usability of a double threshold algorithm as a physical layer security measure in these scenarios. The algorithm is based on the user's behavioral fingerprint extracted from the radio channel characteristics. Effectiveness of this technique is established through experimental measurements considering a variety of common usage scenarios. The results show that this method provides high level of security against false authentication attacks and has great potential in WBANs

    Patterns-of-Life Aided Authentication

    Get PDF
    Wireless Body Area Network (WBAN) applications have grown immensely in the past few years. However, security and privacy of the user are two major obstacles in their development. The complex and very sensitive nature of the body-mounted sensors means the traditional network layer security arrangements are not sufficient to employ their full potential, and novel solutions are necessary. In contrast, security methods based on physical layers tend to be more suitable and have simple requirements. The problem of initial trust needs to be addressed as a prelude to the physical layer security key arrangement. This paper proposes a patterns-of-life aided authentication model to solve this issue. The model employs the wireless channel fingerprint created by the user’s behavior characterization. The performance of the proposed model is established through experimental measurements at 2.45 GHz. Experimental results show that high correlation values of 0.852 to 0.959 with the habitual action of the user in different scenarios can be used for auxiliary identity authentication, which is a scalable result for future studies

    Geometry-Based Assessment of Levee Stability and Overtopping Using Airborne LiDAR Altimetry: A Case Study in the Pearl River Delta, Southern China

    No full text
    Levees are normally the last barrier for defending flood water and storm surges in low-lying coastal cities. Levees in a large delta plain were usually constructed in different time and criteria and have been changing with age as well. Fast and quantitative assessment of levee stability is critical but faces many challenges. This study designs a scoring approach to quickly assess levee stability and overtopping threats with geometric parameters from airborne Light Detection and Ranging (LiDAR). An automated procedure is developed to extract levees geometric parameters from 0.5 m grid LiDAR elevation, such as crown height, width and landside slope. The surveyed levee is seated in the Hengmen waterway in the Pearl River Delta, Southern China. Results show that the stability index using the assessment scores is higher than and superior to the common qualified rates adopted in previous studies. The qualified rate is defined as the count percentage that each parameter meets the designed criteria, while the assessment score proposed in this study assigns different credits to those below/above the designed criteria. The continuous crown heights provide detailed information on levee overtopping threats. The crown heights of levee A and B are above the designed elevation and the flood stage (4.5 m) in a 200-year return period. The crown heights of levee C, D and E are generally lower than 4.5 m and vary in a large range on different sections. The middle section of levee E for the harbor and dock area has front elevation slightly below the flood stage (3.54 m) in a 20-year return period. Moreover, the high precision LiDAR altimetry data reveal various morphological modifications in all levees, such as natural subsidence and artificial modifications, which greatly reduce levees safety and are severe threats to the community. The procedures and assessment approach developed in this study can be easily applied for levees fast assessment in the entire Pearl River Delta and somewhere else, thus offer a suitable mitigation suggestion ahead of levee failure or overtopping

    Timing performance evaluation of Radio Determination Satellite Service (RDSS) for Beidou system

    No full text
    Radio Determination Satellite Service (RDSS) is the advantage and particular characteristics of Beidou, which is different from other satellite navigation systems. According to the rare existing researches of its timing service, this article evaluates timing performance of one-way and two-way using the time series analysis method. Moreover, this paper systematically studies the one-way timing and two-way timing principle and introduces Beidou measured data and analysis method. By analyzing the clock error total curve, the mean value segment, noise situation and timing accuracy, we have the conclusions: (1) one-way timing accuracy is less than 30 ns, and its Root Mean Square (RMS) is less than 6.81 ns; (2) two-way timing accuracy is less than 20 ns, and its Root Mean Square (RMS) is less than 3.60 ns; (3) there exist period switching phenomenon of timing data of one-way and two-way in each beam, and stratification of one-way timing data. These conclusions can be used for the difference compensation of Radio Determination Satellite Service (RDSS), which can provide reference for the clock error consistency of Beidou system, and then improve the system service precision

    Anti-tumor and Anti-angiogenic Ergosterols from Ganoderma lucidum

    No full text
    This study was carried out to isolate chemical constituents from the lipid enriched fraction of Ganoderma lucidum extract and to evaluate their anti-proliferative effect on tumor cells and human umbilical vein endothelial cells (HUVECs). Ergosterol derivatives (1–14) were isolated and purified from the lipid enriched fraction of G. lucidum. Their chemical structures were established by spectroscopic analyses or by comparison of mass and NMR spectral data with those reported previously. Amongst, compound 1 was purified and identified as a new one. All the compounds were evaluated for their anti-proliferative effect on human tumor cells and HUVECs in vitro. Compounds 9–13 displayed inhibitory activity against two types of human tumor cells and HUVECs, which indicated that these four compounds had both anti-tumor and anti-angiogenesis activities. Compound 2 had significant selective inhibition against two tumor cell lines, while 3 exhibited selective inhibition against HUVECs. The structure–activity relationships for inhibiting human HepG2 cells were revealed by 3D-QASR. Ergosterol content in different parts of the raw material and products of G. lucidum was quantified. This study provides a basis for further development and utilization of ergosterol derivatives as natural nutraceuticals and functional food ingredients, or as source of new potential antitumor or anti-angiogenesis chemotherapy agent

    Organosilicon functionalized glycerol carbonates as electrolytes for lithium-ion batteries

    No full text
    Two triethoxyl-/trimethoxyl-silyl functionalized glycerol carbonates and one disiloxanyl functionalized glycerol carbonate were synthesized through a cycloaddition reaction of carbon dioxide with allyl glycidyl ether followed by a hydrosilylation with the corresponding hydrosilanes. Their chemical structures were fully characterized by H-1 and C-13 nuclear magnetic resonance (NMR) spectroscopy and their basic physicochemical properties including dielectric constant, viscosity, ionic conductivity, apparent lithium transference number and electrochemical window, were systematically measured. Trimethoxysilyl functionalized glycerol carbonate as electrolyte solvent with LiPF6 (0.6 M) and lithium oxalyldifluoroborate (0.4 M) binary salts exhibited good cycling stability over 2.7-4.4 V in high-voltage-LiCoO2/graphite full cells. Disiloxane functionalized glycerol carbonate acted as an efficient electrolyte additive to improve the wetting property on the separator in Li/LiCoO2 cells

    Allyl cyanide as a new functional additive in propylene carbonate-based electrolyte for lithium-ion batteries

    No full text
    Allyl cyanide (AC) was investigated as a film-forming additive in propylene carbonate (PC)-based electrolytes for graphite anode in lithium-ion batteries. The film-forming behavior of AC was characterized with cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. By adding 2 wt% AC in the electrolyte of 1 M LiPF6-PC/DMC (1:1, in vol), the exfoliation of graphite anode was effectively suppressed over cycling. Graphite/Li half-cell showed an initial coulombic efficiency of 75 % and a specific capacity of 300 mAh/g after 48 cycles. A possible reductive polymerization mechanism of AC on the surface of graphite was proposed
    corecore