13 research outputs found

    Effect of Magnesium Treatment on the Hot Ductility of Ti-Bearing Peritectic Steel

    No full text
    Surface cracking is a major defect in the production of continuous casting slabs of peritectic steel. The difference in crystal structure between δ phase (before peritectic transformation of steel) and γ phase (after peritectic transformation) results in volume contraction, which leads to uneven cooling of mold and thus forming slab shells with different thicknesses. Then, coupled with the concentration of local stress, surface cracking occurs on slabs. In this paper, the effect of magnesium treatment on the hot ductility of Ti-bearing peritectic steel was studied, and the characteristics of solidification structure and TiN particles were analyzed. Magnesium treatment for Ti-bearing peritectic steel could significantly improve the hot ductility of continuous casting slabs by refining the original austenite structure. After the magnesium treatment, the average grain size of the original austenite of peritectic steel decreased by about 18.7%, and the size of Mg-rich TiN particles decreased by about 41%. In addition, the minimum reduction of area at the third brittle zone after the magnesium treatment was higher than 60%, and the fracture appearance changed from intergranular fracture to ductile fracture after the treatment. The contents of Mg, Ti, O, and N in peritectic steel and the cooling conditions were adjusted reasonably to promote the formation of highly dispersed Mg-rich TiN particles with a sufficient number density and a proper size in the initial solidification stage of peritectic steel, so as to induce the high-temperature δ-ferrite nucleation. Based on the fine δ structure formed by peritectic transformation, through the use of structure heredity and the pinning effect of secondary-precipitated nano TiN particles on the austenite grain boundary, a fine and dense original austenite structure could be obtained to improve the hot ductility of peritectic steel. Industrial tests showed that through the magnesium treatment, the surface cracks of Ti-bearing peritectic steel were effectively restrained, and the corner cracks of slabs were basically eliminated

    Effect of Electromagnetic Frequency on the Flow Behavior in Mold during Bloom Casting

    No full text
    Considering solidification, a large eddy simulation (LES) model of two-phase flow was established to simulate the thermal–magnetic flow coupled fields inside a jumbo bloom. The magnetic field was calculated based on Maxwell’s equations, constitutive equations, and Ohm’s law. An enthalpy–porosity technique was used to model the solidification of the steel. The movement of the free surface was described by the volume of fluid (VOF) approach. With the effect of electromagnetic stirring (MEMS), the vortices in the bloom tended to be strip-like; large vortices mostly appeared in the injection zone, while small ones were found near the surface of the bloom. It is newly found that even though the submerged entry nozzle (SEN) is asymmetrical about the bloom, a biased flow can also be found under the effect of MEMS. The reason for this phenomenon is because the magnetic force is asymmetrical and transient. A high frequency will reduce the period of biased flow; however, the frequency should not be too high because it could also intensify meniscus fluctuations and thus entrap slag droplets in the mold. The velocity near the solidification front can also be increased with a higher frequency

    Evolution of Inclusions in Magnesium–Calcium-Treated Liquid Iron

    No full text
    With the development of clean steel technology, the control of non-metallic inclusions in steel is of increasing importance. Magnesium–calcium treatment can effectively balance the castability of molten steel and the control on inclusion size, which is an inclusion modification approach with application prospect. In view of this, how three addition methods (i.e., adding Mg before Ca, adding Mg after Ca, and adding Mg together with Ca) influenced the modification effect of inclusions in liquid iron was experimentally studied, and how these inclusions evolved with time was discussed in this paper. The results demonstrated that despite the sharp difference in their inclusion evolution, composite inclusions with a magnesium aluminate spinel (MAS) core and an outer CaO–Al2O3–MgO layer were formed by all the three addition methods, with the average inclusion size of 1–2 μm. Furthermore, thermodynamic calculation was adopted to reveal the transformation relationship between MAS and calcium aluminate in each of the three addition methods, and clarify the formation and disappearance mechanisms of the intermediate product CaS in the process of Mg–Ca treatment. The thermodynamic calculation results agreed well with the experiment data

    Effect of Electromagnetic Frequency on the Flow Behavior in Mold during Bloom Casting

    No full text
    Considering solidification, a large eddy simulation (LES) model of two-phase flow was established to simulate the thermal–magnetic flow coupled fields inside a jumbo bloom. The magnetic field was calculated based on Maxwell’s equations, constitutive equations, and Ohm’s law. An enthalpy–porosity technique was used to model the solidification of the steel. The movement of the free surface was described by the volume of fluid (VOF) approach. With the effect of electromagnetic stirring (MEMS), the vortices in the bloom tended to be strip-like; large vortices mostly appeared in the injection zone, while small ones were found near the surface of the bloom. It is newly found that even though the submerged entry nozzle (SEN) is asymmetrical about the bloom, a biased flow can also be found under the effect of MEMS. The reason for this phenomenon is because the magnetic force is asymmetrical and transient. A high frequency will reduce the period of biased flow; however, the frequency should not be too high because it could also intensify meniscus fluctuations and thus entrap slag droplets in the mold. The velocity near the solidification front can also be increased with a higher frequency

    Effect of magnesium treatment on microstructure and property of H13 die steel during EAF-LF-VD-CC steelmaking process

    No full text
    Due to the advantages of Mg on inclusions and carbides in H13 steel, Mg wire was added into industrial ladle after VD process to replace traditional Ca treatment in this paper, which is of great significance for industrial production of H13 steel. This paper focuses on the effects of Mg treatment and traditional Ca treatment on the inclusions, carbides, microstructure and mechanical properties in H13 steel. The results show that feeding Mg wire during EAF→ LF→ VD → CC steelmaking process can ensure the submerged nozzle not being blocked under the condition of continuous casting 15 heats of steel ladle, which means feeding Ca wire can be replaced with Mg wire from the aspect of steelmaking production. The primary carbides in Mg treatment steel are mainly precipitated with MgO or MgAl2O4 as the cores and small in size, while the primary carbides in Ca treatment steel are almost large-size carbides without core. The samples taken from the intermediate ladle show that the primary carbide types are all V-rich, Mo-rich and V–Mo-rich composite, and the size of primary carbides in Mg treatment steel is much smaller than that in Ca treatment steel. Adding Mg is helpful to improve the equiaxed crystal rate of continuous casting ingot. The annealed hot rolling samples show that Mg treatment could interrupt the M23C6 (M = Cr, Fe) chain carbides distributed along the grain boundary. The impact test shows that the dimple fracture surface become small and deep after adding Mg, which improves impact toughness significantly

    Effect of Ca/Mg on Distribution and Morphology of MnS Inclusions in 45MnVS Non-Quenched and Tempered Steel

    No full text
    The influence of Ca treatment, Mg treatment and Ca–Mg combined treatment on the inclusions in 45MnVS non-quenched and tempered steel were studied in the present work. After the melting experiment, a hot rolling test was carried out on the steel ingot. Additionally, the composition, quantity and morphology of inclusions in the test steel samples were analyzed by automatic scanning electron microscopy (ASPEX) and an energy dispersive X-ray spectrometer connected to scanning electron microscope (SEM-EDS). The results indicated that the inclusions in 45MnVS steel mainly consisted of a large amount of sulfides and a small amount of oxides. Sulfide inclusions could be nucleated and precipitated using oxides as a core during solidification. The proportion of spindle-shaped inclusions in sulfide with smaller sizes was higher. The sizes of MnS–oxide inclusions were larger than those of MnS. After hot rolling, the proportion of spindle-shaped MnS and complex sulfides with oxide cores in the samples was increased significantly. Compared with Ca treatment and Ca–Mg treatment, more oxides were formed in the steel with Mg treatment, which can in turn become the cores for sulfide nucleation and precipitation. Thus, the proportion of MnS–oxide inclusions in steel increased. Compared with Ca treatment and Mg treatment, steel with Ca–Mg treatment was more conducive to the formation of complex sulfides, and increased the proportion of spindle-shaped sulfides in 45MnVS steel. After Ca treatment, Mg treatment and Ca–Mg combined treatment, the proportions of spindle-shaped sulfides in steel were 23.31%, 19.39% and 43.24%, respectively

    Inclusion Removements in a Bottom-Stirring Ladle with Novel Slot-Porous Matched Dual Plugs

    No full text
    The cleanness of steel has always been a big problem for secondary refining. In this work, a new method, which is coupled with slot and porous plugs, is proposed to improve the cleanness in steel. Water experiments and numerical simulations were performed to study this effect. Results revealed that when using slot-porous plugs, the flow field was obviously asymmetrical, and the circulation flow was pushed towards the porous side. Then, the removement of inclusions was increased to about 22.7% percent, comparing with traditional two-slot bottom stirring and reducing the dead zone area near the bottom of the ladle; however, the mixing time delay was 16%, comparing with traditional plugs. Then, in order to explain the reason for these phenomena, we established a mathematical model through large eddy simulation and discrete particle modeling (DPM). Results shows that the asymmetry flow field awoke the recirculation flow downwards after using slot-porous plugs, which would homogenize the flow at the bottom, promoting floating in steel. What is more, the velocity near the free surface was lowered; therefore, it could also stabilize the surface velocity as well, which is also beneficial for removing inclusions as well
    corecore