39 research outputs found

    THE EFFECT OF TRUST ON INFORMATION DIFFUSION IN ONLINE SOCIAL NETWORKS

    Get PDF
    online social networks have a explosive growth in recent years and they provide a perfect platform for information diffusion. Many models have been given to explore the information diffusion procedure and its dynamics. But the trust relationship and memory effect are ignored. Based on the complex network theory, The information diffusion model is proposed and the network users, considered as agents, are classified into susceptible, infected and recovered individuals. The users’ behaviour rule and diffusion process are designed. The proposed agent-based model is tested by simulation experiments in four different complex networks: regular network, small world network, random network and scale-free network. Moreover, the effect of four immunization strategies are explored. The research results show that the influence of users’ trust relationship on different networks is varied, and the vertex weight priority immunization strategy is the best one in all four networks

    Peripheral Nerve Injury Induces Dynamic Changes of Tight Junction Components

    Get PDF
    Tight junctions seal off physical barriers, regulate fluid and solute flow, and protect the endoneurial microenvironment of the peripheral nervous system. Physical barriers in the peripheral nervous system were disrupted after nerve injury. However, the dynamic changes of tight junction components after peripheral nerve injury have not been fully determined yet. In the current study, by using previously obtained deep sequencing outcomes and bioinformatic tools, we found that tight junction signaling pathway was activated after peripheral nerve injury. The investigation of the temporal expression patterns of components in tight junction signaling pathway suggested that many claudin family members were down-regulated after nerve injury. Moreover, we examined the effects of matrix metalloproteinases 7 and 9 (MMP7 and MMP9) on tight junction genes both in vitro and in vivo and found that MMP7 and MMP9 modulated the expressions of genes coding for claudin 1, claudin 10, and claudin 22. Our study revealed the dynamic changes of tight junction components after peripheral nerve injury and thus might contribute to the understanding of the molecular mechanisms underlying peripheral nerve injury and regeneration

    An improved joint non-negative matrix factorization for identifying surgical treatment timing of neonatal necrotizing enterocolitis

    Get PDF
    Neonatal necrotizing enterocolitis is a severe neonatal intestinal disease. Timely identification of surgical indications is essential for newborns in order to seek the best time for treatment and improve prognosis. This paper attempts to establish an algorithm model based on multimodal clinical data to determine the features of surgical indications and construct an auxiliary diagnosis model. The proposed algorithm adds hypergraph constraints on the two modal data based on Joint Nonnegative Matrix Factorization (JNMF), aiming to mine the higher-order correlations of the two data features. In addition, the adjacency matrix of the two kinds of data is used as a network regularization constraint to prevent overfitting. Orthogonal and L1-norm regulations were introduced to avoid feature redundancy and perform feature selection, respectively, and confirmed 14 clinical features. Finally, we used three classifiers, random forest, support vector machine, and logistic regression, to perform binary classification of patients requiring surgery. The results show that when the features selected by the proposed algorithm model are classified by random forest, the area under the ROC curve is 0.8, which has high prediction accuracy

    Synthesis and Downconversion Emission Property of Yb2O3:Eu3+ Nanosheets and Nanotubes

    Get PDF
    Ytterbium oxide (Yb2O3) nanocrystals with different Eu3+ (1%, 2%, 5%, and 10%) doped concentrations were synthesized by a facile hydrothermal method, subsequently by calcination at 700°C. The crystal phase, size, and morphology of prepared samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the as-prepared Yb2O3 nanocrystals with sheet- and tube-like shape have cubic phase structure. The Eu3+ doped Yb2O3 nanocrystals were revealed to have good down conversion (DC) property and intensity of the DC luminescence can be modified by Eu3+ contents. In our experiment the 1% Eu3+ doped Yb2O3 nanocrystals showed the strongest DC luminescence among the obtained Yb2O3 nanocrystals

    Systemic functional enrichment and ceRNA network identification following peripheral nerve injury

    No full text
    Abstract Peripheral nerve injury is a worldwide clinical issue that impacts patients’ quality of life and causes huge society and economic burden. Injured peripheral nerves are able to regenerate by themselves. However, for severe peripheral nerve injury, the regenerative abilities are very limited and the regenerative effects are very poor. A better understanding of the mechanisms following peripheral nerve injury will benefit its clinical treatment. In this study, we systematically explored the dynamic changes of mRNAs and long non-coding RNAs (lncRNAs) in the injured sciatic nerve segments after nerve crush, identified significantly involved Gene ontology (GO) terms and Kyoto Enrichment of Genes and Genomes (KEGG) pathways, and innovatively analyzed the correlation of differentially expressed mRNAs and lncRNAs. After the clustering of co-expressed mRNAs and lncRNAs, we performed functional analysis, selected GO term “negative regulation of cell proliferation”, and constructed a competing endogenous RNA (ceRNA) network of LIF and HMOX1 gene in this GO term. This study is the first to provide a systematic dissection of mRNA-microRNA (miRNA)-lncRNA ceRNA network following peripheral nerve injury and thus lays a foundation for further investigations of the regulating mechanisms of non-coding RNAs in peripheral nerve repair and regeneration

    Synthesis, Tunable Multicolor Output, and High Pure Red Upconversion Emission of Lanthanide-Doped Lu2O3 Nanosheets

    Get PDF
    Yb3+ and Ln3+ (Ln = Er, Ho) codoped Lu2O3 square nanocubic sheets were successfully synthesized via a facile hydrothermal method followed by a subsequent dehydration process. The crystal phase, morphology, and composition of hydroxide precursors and target oxides were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and energy-dispersive X-ray spectroscope (EDS). Results present the as-prepared Lu2O3 crystallized in cubic phase, and the monodispersed square nanosheets were maintained both in hydroxide and oxides. Moreover, under 980 nm laser diode (LD) excitation, multicolor output from red to yellow was realized by codoped different lanthanide ions in Lu2O3. It is noteworthy that high pure strong red upconversion emission with red to green ratio of 443.3 of Er-containing nanocrystals was obtained, which is beneficial for in vivo optical bioimaging

    A Study of Complication Identification Based on Weighted Association Rule Mining

    No full text
    Part 4: Knowledge Management and EngineeringInternational audienceWith the fast development of big data technology, data mining algorithms are widely used to process the medical data and support clinical decision-making. In this paper, a new method is proposed to mine the disease association rule and predict the possible complications. The concept of disease concurrent weight is proposed and Back Propagation (BP) neural network model is applied to calculate the disease concurrent weight. Adopting the weighted association rule mining algorithm, diseases complication association rule are derived, which can help to remind doctors about patients’ potential complications. The empirical evaluation using hospital patients’ medical information shows that the proposed method is more effective than two baseline methods

    Effect of Toxicity of Chromium (VI) Stressors Alone and Combined to High Temperature on the Histopathological, Antioxidation, Immunity, and Energy Metabolism in Fish <i>Phoxinus lagowskii</i>

    No full text
    Fish in aquatic ecosystems are often impacted by environmental stressors like temperature fluctuations and exposure to heavy metals. Chromium (Cr6+) is a known environmental pollutant that poses a threat to aquatic life. Various environmental factors, such as water temperature, have been found to affect the toxicity of dissolved chemicals in aquatic ecosystems. We investigated the toxicity of combinations of different concentrations of hexavalent chromium (Cr6+) with high temperatures in fish. Hematological indices demonstrated changes in white blood cells (WBCs), hematocrit (HCT), red blood cells (RBCs), and hemoglobin (Hb) levels during the exposure. The qualitative and semi-quantitative analyses of different tissues confirmed that higher concentrations of Cr6+ caused more significant damage than lower concentrations, with evident alterations observed in circulatory and regressive aspects. Furthermore, brain acetylcholinesterase levels decreased in both single heavy metal exposure and combined exposure at a high temperature. The activity of antioxidant oxidase and immunological parameters increased in all treatment groups compared with the control group following long-term exposure. A significant and increased effect of Cr6+ in the high-temperature groups was observed on the evaluated biomarkers, suggesting a possible synergistic effect between Cr6+ and increased temperature. The integrated biomarker response (IBR) reported the highest level of stress at 10 mg/L Cr6+ combined with high temperature. The IBR analysis revealed that the highest activity of response enzymes, such as acid phosphatase (ACP), superoxide dismutase (SOD), and glutathione S-transferases (GST), was observed in the liver, whereas the gills displayed alkaline phosphatase (ALP), GST, and SOD activity, and the kidneys demonstrated SOD, ACP, and aspartate aminotransferase (AST) to be most active. Through histopathology, antioxidant enzymes, and metabolism- and immunity-related enzymes, we determined that high temperatures enhance the potential toxicity of Cr6+ in fish. We recommend conducting a thorough assessment of the impact of climate change, particularly temperature fluctuations, when studying the toxic effects of metal pollution, like chromium, in aquatic ecosystems

    Genomic and Immune Features in an Intrahepatic Cholangiocarcinoma Patient with Microsatellite Instability-High Suffered Rapid Acquired Resistance to PD-1 Inhibitor

    No full text
    Introduction: Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive liver malignancy with poor prognosis. Recently, the development of immune checkpoint inhibitors (ICIs), such as programmed cell death 1 (PD-1) inhibitors, has emerged as a promising strategy in multiple tumor types, including ICC. Microsatellite instability-high (MSI-H) is an important biomarker for ICIs in solid tumors. The response rate in patients with MSI-H is significantly higher than in those with microsatellite stability/ microsatellite instability-low (MSS/MSI-L). And approximately 80% to 90% of the patients with MSI-H could maintain sustained clinical benefits once they had an initial response. However, some patients could have primary resistance at the beginning, and some might have acquired resistance after long-term treatment. Case Presentation: We present the case of an ICC patient with MSI-H who suffered rapid progression after a short-term remission with Camrelizumab, a kind of PD-1 inhibitor, as second-line treatment. The patient’s genomic and immune features were analyzed by next-generation sequencing and multiplex immunofluorescence staining (mIF) to explore the possible mechanisms of the rapidly acquired resistance of ICIs in this MSI-H case. Discussion/Conclusion: The genomic and immunohistochemical analysis showed that TGFBR2 mutation, loss of HLA B44 supertype, carrying B62 supertype, and increased PD-L1+ cells, macrophages and Tregs in the tumor microenvironment might be related to the non-sustain benefit of ICIs in this MSI-H patient

    The Prevalence and Epidemiology of Salmonella in Retail Raw Poultry Meat in China: A Systematic Review and Meta-Analysis

    No full text
    Foodborne disease caused by Salmonella is an important public health concern worldwide. Animal-based food, especially poultry meat, is the main source of human salmonellosis. The objective of this study was to evaluate the prevalence and epidemiology of Salmonella contamination in raw poultry meat commercialized in China. Following the principle of systematic review, 98 sets of prevalence data were extracted from 74 publications conducted in 21 Chinese provincial regions. The random-effect model was constructed for subgrouping analysis by meat category, preservation type, and geographical location. The prevalence levels differed from high to low among raw poultry meat, including chicken, 26.4% (95% CI: 22.4–30.8%); pigeon, 22.6% (95% CI: 18.2–27.8%); duck, 10.1% (95% CI: 5.3–18.2%); and other poultry meat, 15.4% (95% CI: 12.0–19.5%). Prevalence data on the preservation type revealed that chilled poultry meat might be more likely to experience cross-contamination than non-chilled poultry meat in China. The distribution map of Salmonella for raw poultry meat showed that a higher prevalence level was found in the Shaanxi, Henan, Sichuan, and Beijing regions. All subgroups possessed high amounts of heterogeneity (I2 &gt; 75%). The scientific data regarding the differences in prevalence levels between meat category, preservation method, and geographical region sources might be useful to improve specific interventions to effectively control the incidence of Salmonella in poultry meat
    corecore