204 research outputs found

    Feedback-prop: Convolutional Neural Network Inference under Partial Evidence

    Full text link
    We propose an inference procedure for deep convolutional neural networks (CNNs) when partial evidence is available. Our method consists of a general feedback-based propagation approach (feedback-prop) that boosts the prediction accuracy for an arbitrary set of unknown target labels when the values for a non-overlapping arbitrary set of target labels are known. We show that existing models trained in a multi-label or multi-task setting can readily take advantage of feedback-prop without any retraining or fine-tuning. Our feedback-prop inference procedure is general, simple, reliable, and works on different challenging visual recognition tasks. We present two variants of feedback-prop based on layer-wise and residual iterative updates. We experiment using several multi-task models and show that feedback-prop is effective in all of them. Our results unveil a previously unreported but interesting dynamic property of deep CNNs. We also present an associated technical approach that takes advantage of this property for inference under partial evidence in general visual recognition tasks.Comment: Accepted to CVPR 201

    Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints

    Full text link
    Language is increasingly being used to define rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectively.Comment: 11 pages, published in EMNLP 201

    Variation of Gender Biases in Visual Recognition Models Before and After Finetuning

    Full text link
    We introduce a framework to measure how biases change before and after fine-tuning a large scale visual recognition model for a downstream task. Deep learning models trained on increasing amounts of data are known to encode societal biases. Many computer vision systems today rely on models typically pretrained on large scale datasets. While bias mitigation techniques have been developed for tuning models for downstream tasks, it is currently unclear what are the effects of biases already encoded in a pretrained model. Our framework incorporates sets of canonical images representing individual and pairs of concepts to highlight changes in biases for an array of off-the-shelf pretrained models across model sizes, dataset sizes, and training objectives. Through our analyses, we find that (1) supervised models trained on datasets such as ImageNet-21k are more likely to retain their pretraining biases regardless of the target dataset compared to self-supervised models. We also find that (2) models finetuned on larger scale datasets are more likely to introduce new biased associations. Our results also suggest that (3) biases can transfer to finetuned models and the finetuning objective and dataset can impact the extent of transferred biases.Comment: 10 pages, 3 Figure

    XVTP3D: Cross-view Trajectory Prediction Using Shared 3D Queries for Autonomous Driving

    Full text link
    Trajectory prediction with uncertainty is a critical and challenging task for autonomous driving. Nowadays, we can easily access sensor data represented in multiple views. However, cross-view consistency has not been evaluated by the existing models, which might lead to divergences between the multimodal predictions from different views. It is not practical and effective when the network does not comprehend the 3D scene, which could cause the downstream module in a dilemma. Instead, we predicts multimodal trajectories while maintaining cross-view consistency. We presented a cross-view trajectory prediction method using shared 3D Queries (XVTP3D). We employ a set of 3D queries shared across views to generate multi-goals that are cross-view consistent. We also proposed a random mask method and coarse-to-fine cross-attention to capture robust cross-view features. As far as we know, this is the first work that introduces the outstanding top-down paradigm in BEV detection field to a trajectory prediction problem. The results of experiments on two publicly available datasets show that XVTP3D achieved state-of-the-art performance with consistent cross-view predictions.Comment: 11 pages, 6 figures, accepted by IJCAI 2

    Gender Biases in Automatic Evaluation Metrics for Image Captioning

    Full text link
    Model-based evaluation metrics (e.g., CLIPScore and GPTScore) have demonstrated decent correlations with human judgments in various language generation tasks. However, their impact on fairness remains largely unexplored. It is widely recognized that pretrained models can inadvertently encode societal biases, thus employing these models for evaluation purposes may inadvertently perpetuate and amplify biases. For example, an evaluation metric may favor the caption "a woman is calculating an account book" over "a man is calculating an account book," even if the image only shows male accountants. In this paper, we conduct a systematic study of gender biases in model-based automatic evaluation metrics for image captioning tasks. We start by curating a dataset comprising profession, activity, and object concepts associated with stereotypical gender associations. Then, we demonstrate the negative consequences of using these biased metrics, including the inability to differentiate between biased and unbiased generations, as well as the propagation of biases to generation models through reinforcement learning. Finally, we present a simple and effective way to mitigate the metric bias without hurting the correlations with human judgments. Our dataset and framework lay the foundation for understanding the potential harm of model-based evaluation metrics, and facilitate future works to develop more inclusive evaluation metrics.Comment: Accepted to EMNLP 202

    Understanding In-Context Learning via Supportive Pretraining Data

    Full text link
    In-context learning (ICL) improves language models' performance on a variety of NLP tasks by simply demonstrating a handful of examples at inference time. It is not well understood why ICL ability emerges, as the model has never been specifically trained on such demonstrations. Unlike prior work that explores implicit mechanisms behind ICL, we study ICL via investigating the pretraining data. Specifically, we first adapt an iterative, gradient-based approach to find a small subset of pretraining data that supports ICL. We observe that a continued pretraining on this small subset significantly improves the model's ICL ability, by up to 18%. We then compare the supportive subset constrastively with random subsets of pretraining data and discover: (1) The supportive pretraining data to ICL do not have a higher domain relevance to downstream tasks. (2) The supportive pretraining data have a higher mass of rarely occurring, long-tail tokens. (3) The supportive pretraining data are challenging examples where the information gain from long-range context is below average, indicating learning to incorporate difficult long-range context encourages ICL. Our work takes a first step towards understanding ICL via analyzing instance-level pretraining data. Our insights have a potential to enhance the ICL ability of language models by actively guiding the construction of pretraining data in the future.Comment: ACL 202
    • …
    corecore