207 research outputs found

    Realistic Flipped SU(5) from Orbifold SO(10)

    Get PDF
    We propose a realistic flipped SU(5) model derived from a five-dimensional orbifold SO(10) model. The Standard Model (SM) fermion masses and mixings are explained by combining the traditional Froggatt-Nielsen mechanism with the five-dimensional wave function profiles of the SM fermions. Employing tree-level spontaneous R-symmetry breaking in the hidden sector and extra(ordinary) gauge mediation, we obtain realistic supersymmetry breaking soft mass terms with non-vanishing gaugino masses. Including the messenger fields at the intermediate scale and Kaluza-Klein states at the compactification scale, we study gauge coupling unification. We show that the SO(10) unified gauge coupling is very strong and the unification scale can be much higher than the compactification scale. We briefly discuss proton decay as well.Comment: 25 pages, 1 fi

    The Application of Two-level Attention Models in Deep Convolutional Neural Network for Fine-grained Image Classification

    Full text link
    Fine-grained classification is challenging because categories can only be discriminated by subtle and local differences. Variances in the pose, scale or rotation usually make the problem more difficult. Most fine-grained classification systems follow the pipeline of finding foreground object or object parts (where) to extract discriminative features (what). In this paper, we propose to apply visual attention to fine-grained classification task using deep neural network. Our pipeline integrates three types of attention: the bottom-up attention that propose candidate patches, the object-level top-down attention that selects relevant patches to a certain object, and the part-level top-down attention that localizes discriminative parts. We combine these attentions to train domain-specific deep nets, then use it to improve both the what and where aspects. Importantly, we avoid using expensive annotations like bounding box or part information from end-to-end. The weak supervision constraint makes our work easier to generalize. We have verified the effectiveness of the method on the subsets of ILSVRC2012 dataset and CUB200_2011 dataset. Our pipeline delivered significant improvements and achieved the best accuracy under the weakest supervision condition. The performance is competitive against other methods that rely on additional annotations

    The Minimal UV-induced Effective QCD Axion Theory

    Full text link
    The characteristic axion couplings could be generated via effective couplings between the Standard Model (SM) fermions to a pseudo-Goldstone from a high-scale U(1)U(1) Peccei-Quinn (PQ) symmetry breaking. Assuming that the UV-induced effective operators generate necessary couplings before the PQ symmetry breaking, and any low-scale couplings to the SM are restricted to the Yukawa sector, three minimal natural scenarios can be formulated, which provides a connection between the QCD-axions and mediators at the GUT/string scales. We find that the PQ symmetry breaking scale could be about 101510^{15} GeV, higher than the classical QCD dark matter axion window but possible if the anthropic window is considered. We also propose an experiment to probe such scenarios. If the dark matter axion is discovered, they might suggest that we live in an atypical Hubble volume.Comment: 4 page
    • …
    corecore