84 research outputs found

    Gaia Astrometry and MIKE+PFS Doppler Data Joint Analysis Reveals that HD 175167b is a Massive Cold Jupiter

    Full text link
    HD 175167b is a cold (Pb1200P_{b}\sim 1200 days) Jupiter with a minimum mass of Mpsini=7.8±3.5 MJM_{p}\sin i=7.8\pm3.5\ M_J orbiting a Sun-like star, first discovered by the Magellan Planet Search Program based on MIKE observations. Through a joint analysis of the MIKE data and the Gaia two-body orbital solution, Winn (2022) found a companion mass of Mp=14.8±1.8 MJM_{p}=14.8\pm1.8\ M_J and suggested that it might be better designated as a brown dwarf. Additional publicly available radial velocity data from Magellan/PFS better constrains the model, and reveals that the companion is a massive cold Jupiter with a mass of Mp=10.2±0.4 MJM_p=10.2\pm0.4\ M_{J} and a period of Pb=1275.8±0.4P_b=1275.8\pm0.4 days. The planet orbit is inclined by i=38.6±1.7i=38.6\pm1.7^{\circ} with an eccentricity of 0.529±0.0020.529\pm0.002.Comment: 4 pages, 1 figure, submitted to RNAA

    Two Candidate KH 15D-like Systems from the Zwicky Transient Facility

    Full text link
    KH 15D contains a circumbinary disk that is tilted relative to the orbital plane of the central binary. The precession of the disk and the orbital motion of the binary together produce rich phenomena in the photometric light curve. In this work, we present the discovery and preliminary analysis of two objects that resemble the key features of KH 15D from the Zwicky Transient Facility. These new objects, Bernhard-1 and Bernhard-2, show large-amplitude (>1.5>1.5\,mag), long-duration (more than tens of days), and periodic dimming events. A one-sided screen model is developed to model the photometric behaviour of these objects, the physical interpretation of which is a tilted, warped circumbinary disk occulting the inner binary. Changes in the object light curves suggest potential precession periods over timescales longer than 10 years. Additional photometric and spectroscopic observations are encouraged to better understand the nature of these interesting systems.Comment: 10 pages, 5 figures, 2 tables, accepted to ApJ Letter

    TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844

    Full text link
    Data from the newly-commissioned \textit{Transiting Exoplanet Survey Satellite} (TESS) has revealed a "hot Earth" around LHS 3844, an M dwarf located 15 pc away. The planet has a radius of 1.32±0.021.32\pm 0.02 RR_\oplus and orbits the star every 11 hours. Although the existence of an atmosphere around such a strongly irradiated planet is questionable, the star is bright enough (I=11.9I=11.9, K=9.1K=9.1) for this possibility to be investigated with transit and occultation spectroscopy. The star's brightness and the planet's short period will also facilitate the measurement of the planet's mass through Doppler spectroscopy.Comment: 10 pages, 4 figures. Submitted to ApJ Letters. This letter makes use of the TESS Alert data, which is currently in a beta test phase, using data from the pipelines at the TESS Science Office and at the TESS Science Processing Operations Cente

    TOI-216b and TOI-216 c: Two Warm, Large Exoplanets in or Slightly Wide of the 2:1 Orbital Resonance

    Get PDF
    Warm, large exoplanets with 10-100 day orbital periods pose a major challenge to our understanding of how planetary systems form and evolve. Although high eccentricity tidal migration has been invoked to explain their proximity to their host stars, a handful reside in or near orbital resonance with nearby planets, suggesting a gentler history of in situ formation or disk migration. Here we confirm and characterize a pair of warm, large exoplanets discovered by the TESS Mission orbiting K-dwarf TOI-216. Our analysis includes additional transits and transit exclusion windows observed via ground-based follow-up. We find two families of solutions, one corresponding to a sub-Saturn-mass planet accompanied by a Neptune-mass planet and the other to a Jupiter in resonance with a sub-Saturn-mass planet. We prefer the second solution based on the orbital period ratio, the planet radii, the lower free eccentricities, and libration of the 2:1 resonant argument, but cannot rule out the first. The free eccentricities and mutual inclination are compatible with stirring by other, undetected planets in the system, particularly for the second solution. We discuss prospects for better constraints on the planets' properties and orbits through follow-up, including transits observed from the ground.We gratefully acknowledge support by NASA XRP NNX16AB50G and NASA TESS GO 80NSSC18K1695. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. T.D. acknowledges support from MIT’s Kavli Institute as a Kavli postdoctoral fellow. K.H. acknowledges support from STFC grant ST/R000824/1. M.Ž. acknowledges funding from the Australian Research Council (grant DP170102233). This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1748958

    TESS Discovery of Twin Planets near 2:1 Resonance around Early M-Dwarf TOI 4342

    Full text link
    With data from the Transiting Exoplanet Survey Satellite (TESS), we showcase improvements to the MIT Quick-Look Pipeline (QLP) through the discovery and validation of a multi-planet system around M-dwarf TOI 4342 (Tmag=11.032T_{mag}=11.032, M=0.63MM_* = 0.63 M_\odot, R=0.60RR_* = 0.60 R_\odot, Teff=3900T_{eff} = 3900 K, d=61.54d = 61.54 pc). With updates to QLP, including a new multi-planet search, as well as faster cadence data from TESS' First Extended Mission, we discovered two sub-Neptunes (Rb=2.2660.038+0.038RR_b = 2.266_{-0.038}^{+0.038} R_\oplus and Rc=2.4150.040+0.043RR_c = 2.415_{-0.040}^{+0.043} R_\oplus; PbP_b = 5.538 days and PcP_c = 10.689 days) and validated them with ground-based photometry, spectra, and speckle imaging. Both planets notably have high transmission spectroscopy metrics (TSMs) of 36 and 32, making TOI 4342 one of the best systems for comparative atmospheric studies. This system demonstrates how improvements to QLP, along with faster cadence Full-Frame Images (FFIs), can lead to the discovery of new multi-planet systems.Comment: accepted for publication in A

    TESS Hunt for Young and Maturing Exoplanets (THYME). X. A Two-planet System in the 210 Myr MELANGE-5 Association

    Get PDF
    Young (<500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methods—isochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variability—we estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80–110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (Notch and LOCoR). We find that the planets are 2.10 ± 0.09 R⊕ and 2.88 ± 0.10 R⊕ and orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K = 9.1 mag), small (R* = 0.44 R⊙), and cool (Teff = 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST

    TESS Hunt for Young and Maturing Exoplanets (THYME). X. A Two-planet System in the 210 Myr MELANGE-5 Association

    Get PDF
    Young (<500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methods—isochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variability—we estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80–110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (Notch and LOCoR). We find that the planets are 2.10 ± 0.09 R⊕ and 2.88 ± 0.10 R⊕ and orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K = 9.1 mag), small (R* = 0.44 R⊙), and cool (Teff = 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST

    A massive hot Jupiter orbiting a metal-rich early-M star discovered in the TESS full frame images

    Get PDF
    Observations and statistical studies have shown that giant planets are rare around M dwarfs compared with Sun-like stars. The formation mechanism of these extreme systems remains under debate for decades. With the help of the TESS mission and ground based follow-up observations, we report the discovery of TOI-4201b, the most massive and densest hot Jupiter around an M dwarf known so far with a radius of 1.22±0.04 RJ1.22\pm 0.04\ R_J and a mass of 2.48±0.09 MJ2.48\pm0.09\ M_J, about 5 times heavier than most other giant planets around M dwarfs. It also has the highest planet-to-star mass ratio (q4×103q\sim 4\times 10^{-3}) among such systems. The host star is an early-M dwarf with a mass of $0.61\pm0.02\ M_{\odot}andaradiusof and a radius of 0.63\pm0.02\ R_{\odot}.Ithassignificantsupersolarironabundance([Fe/H]=. It has significant super-solar iron abundance ([Fe/H]=0.52\pm 0.08$ dex). However, interior structure modeling suggests that its planet TOI-4201b is metal-poor, which challenges the classical core-accretion correlation of stellar-planet metallicity, unless the planet is inflated by additional energy sources. Building on the detection of this planet, we compare the stellar metallicity distribution of four planetary groups: hot/warm Jupiters around G/M dwarfs. We find that hot/warm Jupiters show a similar metallicity dependence around G-type stars. For M dwarf host stars, the occurrence of hot Jupiters shows a much stronger correlation with iron abundance, while warm Jupiters display a weaker preference, indicating possible different formation histories.Comment: 21 pages, 11 figures, 4 tables, submitted to A
    corecore