34 research outputs found

    Near-filed SAR Image Restoration with Deep Learning Inverse Technique: A Preliminary Study

    Full text link
    Benefiting from a relatively larger aperture's angle, and in combination with a wide transmitting bandwidth, near-field synthetic aperture radar (SAR) provides a high-resolution image of a target's scattering distribution-hot spots. Meanwhile, imaging result suffers inevitable degradation from sidelobes, clutters, and noises, hindering the information retrieval of the target. To restore the image, current methods make simplified assumptions; for example, the point spread function (PSF) is spatially consistent, the target consists of sparse point scatters, etc. Thus, they achieve limited restoration performance in terms of the target's shape, especially for complex targets. To address these issues, a preliminary study is conducted on restoration with the recent promising deep learning inverse technique in this work. We reformulate the degradation model into a spatially variable complex-convolution model, where the near-field SAR's system response is considered. Adhering to it, a model-based deep learning network is designed to restore the image. A simulated degraded image dataset from multiple complex target models is constructed to validate the network. All the images are formulated using the electromagnetic simulation tool. Experiments on the dataset reveal their effectiveness. Compared with current methods, superior performance is achieved regarding the target's shape and energy estimation

    Solving 3D Radar Imaging Inverse Problems with a Multi-cognition Task-oriented Framework

    Full text link
    This work focuses on 3D Radar imaging inverse problems. Current methods obtain undifferentiated results that suffer task-depended information retrieval loss and thus don't meet the task's specific demands well. For example, biased scattering energy may be acceptable for screen imaging but not for scattering diagnosis. To address this issue, we propose a new task-oriented imaging framework. The imaging principle is task-oriented through an analysis phase to obtain task's demands. The imaging model is multi-cognition regularized to embed and fulfill demands. The imaging method is designed to be general-ized, where couplings between cognitions are decoupled and solved individually with approximation and variable-splitting techniques. Tasks include scattering diagnosis, person screen imaging, and parcel screening imaging are given as examples. Experiments on data from two systems indicate that the pro-posed framework outperforms the current ones in task-depended information retrieval

    Single cell atlas for 11 non-model mammals, reptiles and birds.

    Get PDF
    The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening of animal cells could reveal the expression patterns of viral entry genes in different hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger, and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core developmental programs, critical connectomes, and conserved regulatory circuits among these evolutionarily distant species. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and putative zoonotic reservoirs

    SoccerNet 2023 Challenges Results

    Full text link
    peer reviewedThe SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet

    Overseas Chinese Student Agency: Academic norm, Oral Participation and Discursive Practices for Change

    No full text
    Participatory practice of overseas Asian students has been much deliberated over these two decades. Recent studies on the international higher education have proposed new perspectives and analytical framework in looking at their classroom participation, which put the essentialising notion of culture and ongoing misunderstandings under attack. Among these alternative approaches, the proposal for a view on ―small culture‖ and ―academic transition‖ are useful in the exploration of student agency, as it emphasizes variation and variability and is also in line with the perspective that exerting agency is a discursive practice upon contingency. Drawing on Davies‘s (1990) view that exerting agency is conditional and requires certain resources, the current study focuses on a group of Mainland Chinese overseas students in a UK university and aims to find out what resources are available for them and how their agency is enacted considering the academic norm in the new community. It is demonstrated that overseas students with an Asian culture have developed their own value during their overseas academic engagement. They choose to mediate between their own culture and perceived norms and act upon the awareness of ―interactive others‖. Therefore, being agentive individuals, overseas students also contribute to the shaping of international education

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    No full text
    Synthetic aperture radar (SAR) is an important active microwave imaging sensor [...

    RBFA-Net: A Rotated Balanced Feature-Aligned Network for Rotated SAR Ship Detection and Classification

    No full text
    Ship detection with rotated bounding boxes in synthetic aperture radar (SAR) images is now a hot spot. However, there are still some obstacles, such as multi-scale ships, misalignment between rotated anchors and features, and the opposite requirements for spatial sensitivity of regression tasks and classification tasks. In order to solve these problems, we propose a rotated balanced feature-aligned network (RBFA-Net) where three targeted networks are designed. They are, respectively, a balanced attention feature pyramid network (BAFPN), an anchor-guided feature alignment network (AFAN) and a rotational detection network (RDN). BAFPN is an improved FPN, with attention module for fusing and enhancing multi-level features, by which we can decrease the negative impact of multi-scale ship feature differences. In AFAN, we adopt an alignment convolution layer to adaptively align the convolution features according to rotated anchor boxes for solving the misalignment problem. In RDN, we propose a task decoupling module (TDM) to adjust the feature maps, respectively, for solving the conflict between the regression task and classification task. In addition, we adopt a balanced L1 loss to balance the classification loss and regression loss. Based on the SAR rotation ship detection dataset, we conduct extensive ablation experiments and compare our RBFA-Net with eight other state-of-the-art rotated detection networks. The experiment results show that among the eight state-of-the-art rotated detection networks, RBFA-Net makes a 7.19% improvement with mean average precision compared to the second-best network

    Numerical Investigation of Effect of Drum Barrel on Coal-Loading Performance of Thin-Coal-Seam Shearer Machines

    No full text
    Thin-coal-seam shearer mining efficiency is seriously restricted by the poor loading performance of the drum. The loading of the drum to the cracked coal lumps is based on a screw-conveying mechanism, and its loading performance is influenced by many structural parameters, including drum width, helical angle, axial tilt angle, number of blades and form and diameter of the barrel. The barrel diameter directly influences the drum envelope zone’s capacity, and its influence on loading performance is not yet clear. Therefore, this work first compared the drum-loading results between experiments and numerical modeling, and the results proved that the application of the discrete element method (DEM) to the modeling drum loading process is feasible and the results are reliable. Secondly, the influence of barrel diameter on particles’ axial velocity, loading rate and web depth was studied using the ejection and pushing modes. The results showed that the particles’ axial velocity has a noticeable impact on loading rate under ejection loading conditions, and the loading rate first increases and then decreases with the increase in barrel diameter. When the diameter is less than 700 mm in drum-pushing modes, the particles’ axial velocity plays an important role on drum loading; the filling level has an obvious impact on loading performance when the barrel diameter is larger than 700 mm. The drum loading ejection rate is 25% higher than that of pushing mode, which is due to the loading rate of particles located in a web depth from 300 to 600 mm. The influence of barrel diameter on loading performance using drum ejection is more obvious than that in pushing mode. The results provide a reference for drum structural design to some extent

    SAR Ship Detection in Complex Scenes Based on Adaptive Anchor Assignment and IOU Supervise

    No full text
    This study aims to address the unreasonable assignment of positive and negative samples and poor localization quality in ship detection in complex scenes. Therefore, in this study, a Synthetic Aperture Radar (SAR) ship detection network (A3-IOUS-Net) based on adaptive anchor assignment and Intersection over Union (IOU) supervise in complex scenes is proposed. First, an adaptive anchor assignment mechanism is proposed, where a probability distribution model is established to adaptively assign anchors as positive and negative samples to enhance the ship samples’ learning ability in complex scenes. Then, an IOU supervise mechanism is proposed, which adds an IOU prediction branch in the prediction head to supervise the localization quality of detection boxes, allowing the network to accurately locate the SAR ship targets in complex scenes. Furthermore, a coordinate attention module is introduced into the prediction branch to suppress the background clutter interference and improve the SAR ship detection accuracy. The experimental results on the open SAR Ship Detection Dataset (SSDD) show that the Average Precision (AP) of A3-IOUS-Net in complex scenes is 82.04%, superior to the other 15 comparison models
    corecore