50 research outputs found
Midlatitude Plasma Bubbles Over China and Adjacent Areas During a Magnetic Storm on 8 September 2017
This paper presents observations of postsunset super plasma bubbles over China and adjacent areas during the second main phase of a storm on 8 September 2017. The signatures of the plasma bubbles can be seen or deduced from (1) deep field‐aligned total electron content depletions embedded in regional ionospheric maps derived from dense Global Navigation Satellite System networks, (2) significant equatorial and midlatitudinal plasma bite‐outs in electron density measurements on board Swarm satellites, and (3) enhancements of ionosonde virtual height and scintillation in local evening associated with strong southward interplanetary magnetic field. The bubbles/depletions covered a broad area mainly within 20°–45°N and 80°–110°E with bifurcated structures and persisted for nearly 5 hr (∼13–18 UT). One prominent feature is that the bubbles extended remarkably along the magnetic field lines in the form of depleted flux tubes, reaching up to midlatitude of around 50°N (magnetic latitude: 45.5°N) that maps to an altitude of 6,600 km over the magnetic equator. The maximum upward drift speed of the bubbles over the magnetic equator was about 700 m/s and gradually decreased with altitude and time. The possible triggering mechanism of the plasma bubbles was estimated to be storm time eastward prompt penetration electric field, while the traveling ionospheric disturbance could play a role in facilitating the latitudinal extension of the depletions.Key PointsPostsunset midlatitude plasma bubbles were observed over China and adjacent areas using GNSS TEC, Swarm Ne, and ionosonde dataThe plasma bubbles were triggered by PPEF and TID in equatorial regions and extended along the magnetic field lines to 50°N (45.5 MLAT)Plasma bubbles might reach an altitude of 6,600 km over the magnetic equator with the upper limit of upward drift speed being around 700 m/sPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143723/1/swe20573.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143723/2/swe20573_am.pd
Effects of repetitive transcranial magnetic stimulation on episodic memory in patients with subjective cognitive decline: study protocol for a randomized clinical trial
IntroductionEarly decline of episodic memory is detectable in subjective cognitive decline (SCD). The left dorsolateral prefrontal cortex (DLPFC) is associated with encoding episodic memories. Repetitive transcranial magnetic stimulation (rTMS) is a novel and viable tool to improve cognitive function in Alzheimer’s disease (AD) and mild cognitive impairment, but the treatment effect in SCD has not been studied. We aim to investigate the efficacy of rTMS on episodic memory in individuals with SCD, and to explore the potential mechanisms of neural plasticity.MethodsIn our randomized, sham-controlled trial, patients (n = 60) with SCD will receive 20 sessions (5 consecutive days per week for 4 weeks) of real rTMS (n = 30) or sham rTMS (n = 30) over the left DLPFC. The primary outcome is the Auditory Verbal Learning Test-Huashan version (AVLT-H). Other neuropsychological examinations and the long-term potentiation (LTP)-like cortical plasticity evaluation serve as the secondary outcomes. These outcomes will be assessed before and at the end of the intervention.DiscussionIf the episodic memory of SCD improve after the intervention, the study will confirm that rTMS is a promising intervention for cognitive function improvement on the early stage of dementia. This study will also provide important clinical evidence for early intervention in AD and emphasizes the significance that impaired LTP-like cortical plasticity may be a potential biomarker of AD prognosis by demonstrating the predictive role of LTP on cognitive improvement in SCD.Ethics and disseminationThe study was approved by the Human Research Ethics Committee of the hospital (No. 2023-002-01). The results will be published in peer-review publications.Clinical trial registrationhttps://www.chictr.org.cn/, identifier ChiCTR2300075517
SoccerNet 2023 Challenges Results
peer reviewedThe SoccerNet 2023 challenges were the third annual video understanding
challenges organized by the SoccerNet team. For this third edition, the
challenges were composed of seven vision-based tasks split into three main
themes. The first theme, broadcast video understanding, is composed of three
high-level tasks related to describing events occurring in the video
broadcasts: (1) action spotting, focusing on retrieving all timestamps related
to global actions in soccer, (2) ball action spotting, focusing on retrieving
all timestamps related to the soccer ball change of state, and (3) dense video
captioning, focusing on describing the broadcast with natural language and
anchored timestamps. The second theme, field understanding, relates to the
single task of (4) camera calibration, focusing on retrieving the intrinsic and
extrinsic camera parameters from images. The third and last theme, player
understanding, is composed of three low-level tasks related to extracting
information about the players: (5) re-identification, focusing on retrieving
the same players across multiple views, (6) multiple object tracking, focusing
on tracking players and the ball through unedited video streams, and (7) jersey
number recognition, focusing on recognizing the jersey number of players from
tracklets. Compared to the previous editions of the SoccerNet challenges, tasks
(2-3-7) are novel, including new annotations and data, task (4) was enhanced
with more data and annotations, and task (6) now focuses on end-to-end
approaches. More information on the tasks, challenges, and leaderboards are
available on https://www.soccer-net.org. Baselines and development kits can be
found on https://github.com/SoccerNet
Investigation on the Current Situation of Reuse of the Exterior Windows of the Modern Complex in Zhongshan Square, Dalian
Exterior windows are architectural details with decoration, lighting and ventilation. By studying the current situation of the reuse of the exterior windows of the modern complex and making a survey of several representative windows, this paper analyzes and finds that the reuse of buildings in this area is quite different, but the overall situation is relatively good. The purpose of this investigation is to explore the advantages and disadvantages of the methods of reuse, in order to find a way that can realize the balance between the man and buildings
Quantification of Gly m 5.0101 in Soybean and Soy Products by Liquid Chromatography-Tandem Mass Spectrometry
Gly m 5.0101, the alpha subunit of β-conglycinin, is one of the major allergens found in soybeans that has been identified as causing an allergic reaction. Here, we developed a quantification method of Gly m 5.0101 with multiple reaction monitoring using the synthetic peptide 194NPFLFGSNR202 as the external standard. Firstly, the ground soybean was defatted and extracted with a protein extraction buffer. Then the crude extract was on-filter digested by trypsin and analyzed by liquid chromatography-tandem mass spectrometry. The selected peptide exhibited a detection limit of 0.48 ng/mL and a linear relationship in a concentration range from 1.6 to 500 ng/mL (r2 > 0.99). The developed method was successfully applied to quantify the Gly m 5.0101 level in dozens of soybean varieties from different sources and soybean products derived from different processing techniques. The developed method could be used to further analyze β-conglycinin in soybean seeds combined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis
In Situ DRIFTS Studies of NH3-SCR Mechanism over V2O5-CeO2/TiO2-ZrO2 Catalysts for Selective Catalytic Reduction of NOx
TiO2-ZrO2 (Ti-Zr) carrier was prepared by a co-precipitation method and 1 wt. % V2O5 and 0.2 CeO2 (the Mole ratio of Ce to Ti-Zr) was impregnated to obtain the V2O5-CeO2/TiO2-ZrO2 catalyst for the selective catalytic reduction of NOx by NH3. The transient activity tests and the in situ DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) analyses were employed to explore the NH3-SCR (selective catalytic reduction) mechanism systematically, and by designing various conditions of single or mixing feeding gas and pre-treatment ways, a possible pathway of NOx reduction was proposed. It was found that NH3 exhibited a competitive advantage over NO in its adsorption on the catalyst surface, and could form an active intermediate substance of -NH2. More acid sites and intermediate reaction species (-NH2), at lower temperatures, significantly promoted the SCR activity of the V2O5-0.2CeO2/TiO2-ZrO2 catalyst. The presence of O2 could promote the conversion of NO to NO2, while NO2 was easier to reduce. The co-existence of NH3 and O2 resulted in the NH3 adsorption strength being lower, as compared to tests without O2, since O2 could occupy a part of the active site. Due to CeO2’s excellent oxygen storage-release capacity, NH3 adsorption was weakened, in comparison to the 1 wt. % V2O5-0.2CeO2/TiO2-ZrO2 catalyst. If NOx were to be pre-adsorbed in the catalyst, the formation of nitrate and nitro species would be difficult to desorb, which would greatly hinder the SCR reaction. All the findings concluded that NH3-SCR worked mainly through the Eley-Rideal (E-R) mechanism
A Study of Stray Neutron Field Measurements for the Neutron Scattering Instruments at CSNS
Stray neutrons might cause several negative impacts. However, it is usually difficult to conduct precise stray neutron simulations using the Monte Carlo method. Therefore, in this study, a measurement technique was proposed to study the stray neutrons experimentally inside the neutron scattering instruments at China Spallation Neutron Source (CSNS). The adopted measurement instruments comprise an extended-range Bonner sphere spectrometer and a commercial neutron ambient-dose-equivalent dosimeter, which enables us to directly measure the neutron spectra and ambient-dose equivalent H*(10) values. Verification experiments were performed inside the BL06 beam line experimental area at CSNS at two exposed locations with different sample conditions. Comparison of the experimentally measured neutron spectra, integral neutron fluence, and H*(10) value with the simulations demonstrated the feasibility of using the proposed method for studying stray neutrons for the neutron instruments
A Study of Stray Neutron Field Measurements for the Neutron Scattering Instruments at CSNS
Stray neutrons might cause several negative impacts. However, it is usually difficult to conduct precise stray neutron simulations using the Monte Carlo method. Therefore, in this study, a measurement technique was proposed to study the stray neutrons experimentally inside the neutron scattering instruments at China Spallation Neutron Source (CSNS). The adopted measurement instruments comprise an extended-range Bonner sphere spectrometer and a commercial neutron ambient-dose-equivalent dosimeter, which enables us to directly measure the neutron spectra and ambient-dose equivalent H*(10) values. Verification experiments were performed inside the BL06 beam line experimental area at CSNS at two exposed locations with different sample conditions. Comparison of the experimentally measured neutron spectra, integral neutron fluence, and H*(10) value with the simulations demonstrated the feasibility of using the proposed method for studying stray neutrons for the neutron instruments