13 research outputs found

    Ninety-Hz Spinal Cord Stimulation-Induced Analgesia Is Dependent on Active Charge Balance and Is Nonlinearly Related to Amplitude:A Sham-Controlled Behavioral Study in a Rodent Model of Chronic Neuropathic Pain

    No full text
    BACKGROUND: Ninety-Hz active-recharge spinal cord stimulation (SCS) applied at below sensory-threshold intensity, as used with fast-acting subperception therapy spinal cord stimulation, has been shown clinically to produce significant analgesia, but additional characterization is required to better understand the therapy. This preclinical study investigates the behavioral effect of multiple 90-Hz SCS variants in a rodent model of neuropathic pain, focusing on charge balance and the relationship between 90-Hz efficacy and stimulation intensity. MATERIALS AND METHODS: Rats (n = 24) received a unilateral partial sciatic nerve ligation to induce neuropathic pain and were implanted with a quadripolar lead at T13. Mechanical hypersensitivity was assessed before, during, and after 60 minutes of SCS. After a prescreen with 50-Hz SCS 67% motor threshold ([MT], the positive control), rats underwent a randomized-crossover study including sham SCS and several 90-Hz SCS paradigms (at 40% MT or 60% MT, either using active or pseudopassive recharge) (experiment 1, n = 16). A second, identical experiment (experiment 2) was performed to supplement data with 90-Hz SCS at 20% and 80% MT (experiment 2, n = 8). RESULTS: Experiment 1: At 40% MT, 90-Hz active-recharge SCS produced a significantly larger recovery to baseline than did 90-Hz pseudopassive SCS at both tested intensities and sham SCS. Experiment 2: Only the 90-Hz SCS active recharge at 40% MT and 50-Hz SCS positive control caused mean recovery to baseline that was statistically better than that of sham SCS. CONCLUSIONS: The degree to which 90-Hz SCS reduced mechanical hypersensitivity during stimulation depended on the nature of charge balance, with 90-Hz active-recharge SCS generating better responses than did 90-Hz pseudopassive recharge SCS. In addition, our findings suggest that the amplitude of 90-Hz active-recharge SCS must be carefully configured for efficacy

    Conventional-SCS vs. Burst-SCS and the Behavioral Effect on Mechanical Hypersensitivity in a Rat Model of Chronic Neuropathic Pain: Effect of Amplitude

    No full text
    Objective: Various spinal cord stimulation (SCS) modes are used in the treatment of chronic neuropathic pain disorders. Conventional (Con) and Burst-SCS are hypothesized to exert analgesic effects through different stimulation-induced mechanisms. Preclinical electrophysiological findings suggest that stimulation intensity is correlated with the effectiveness of Burst-SCS. Therefore, we aimed to investigate the relation between amplitude (charge per second) and behavioral effects in a rat model of chronic neuropathic pain, for both Conventional Spinal Cord Stimulation (Con-SCS) and biphasic Burst-SCS. Materials and Methods: Animals (n=12 rats) received a unilateral partial sciatic nerve ligation, after which they were implanted with quadripolar electrodes in the epidural space at thoracic level 13. Mechanical hypersensitivity was assessed using paw withdrawal thresholds (WTs) to von Frey monofilaments, at various SCS intensities (amplitudes) and multiple time points during 60 minutes of stimulation and 30 minutes post stimulation. Results: Increasing amplitude was shown to improve the efficacy of Con-SCS, whereas the efficacy of Burst-SCS showed a nonmonotonic relation with amplitude. Con-SCS at 66% MT (n=5) and Burst-SCS at 50% MT (n=6) were found to be equally effective in normalizing mechanical hypersensitivity. However, in the assessed time period Burst-SCS required significantly more mean charge per second to do so (p<0.01). When applied at comparable mean charge per second, Con-SCS resulted in a superior behavioral outcome (p < 0.01), compared with Burst-SCS. Conclusion: Biphasic Burst-SCS requires significantly more mean charge per second in order to achieve similar pain relief, as compared with Con-SCS, in an experimental model of chronic neuropathic pain

    Conventional-SCS vs. Burst-SCS and the Behavioral Effect on Mechanical Hypersensitivity in a Rat Model of Chronic Neuropathic Pain:Effect of Amplitude

    No full text
    Objective: Various spinal cord stimulation (SCS) modes are used in the treatment of chronic neuropathic pain disorders. Conventional (Con) and Burst-SCS are hypothesized to exert analgesic effects through different stimulation-induced mechanisms. Preclinical electrophysiological findings suggest that stimulation intensity is correlated with the effectiveness of Burst-SCS. Therefore, we aimed to investigate the relation between amplitude (charge per second) and behavioral effects in a rat model of chronic neuropathic pain, for both Conventional Spinal Cord Stimulation (Con-SCS) and biphasic Burst-SCS. Materials and Methods: Animals (n=12 rats) received a unilateral partial sciatic nerve ligation, after which they were implanted with quadripolar electrodes in the epidural space at thoracic level 13. Mechanical hypersensitivity was assessed using paw withdrawal thresholds (WTs) to von Frey monofilaments, at various SCS intensities (amplitudes) and multiple time points during 60 minutes of stimulation and 30 minutes post stimulation. Results: Increasing amplitude was shown to improve the efficacy of Con-SCS, whereas the efficacy of Burst-SCS showed a nonmonotonic relation with amplitude. Con-SCS at 66% MT (n=5) and Burst-SCS at 50% MT (n=6) were found to be equally effective in normalizing mechanical hypersensitivity. However, in the assessed time period Burst-SCS required significantly more mean charge per second to do so (p<0.01). When applied at comparable mean charge per second, Con-SCS resulted in a superior behavioral outcome (p < 0.01), compared with Burst-SCS. Conclusion: Biphasic Burst-SCS requires significantly more mean charge per second in order to achieve similar pain relief, as compared with Con-SCS, in an experimental model of chronic neuropathic pain

    Active Recharge Burst and Tonic Spinal Cord Stimulation Engage Different Supraspinal Mechanisms: A Functional Magnetic Resonance Imaging Study in Peripherally Injured Chronic Neuropathic Rats

    No full text
    Objectives To assess the supraspinal working mechanisms of the burst spinal cord stimulation (SCS) mode, we used functional magnetic resonance imaging (fMRI) in chronic neuropathic rats. We hypothesized that active recharge burst SCS would induce a more profound blood oxygenation level-dependent (BOLD) signal increase in areas associated with cognitive-emotional aspects of pain, as compared to tonic SCS. Methods Sprague Dawley rats (n = 17) underwent a unilateral partial sciatic nerve ligation, which resulted in chronic neuropathic pain. Quadripolar SCS electrodes were epidurally positioned on top of the dorsal columns at Th13. Isoflurane-anesthetized (1.5%) rats received either tonic SCS (n = 8) or burst SCS (n = 9) at 66% of motor threshold. BOLD fMRI was conducted before, during, and after SCS using a 9.4-T horizontal bore scanner. Results Overall, both tonic and burst SCS induced a significant increase of BOLD signal levels in areas associated with the location and intensity of pain, and areas associated with cognitive-emotional aspects of pain. Additionally, burst SCS significantly increased BOLD signal levels in the raphe nuclei, nucleus accumbens, and caudate putamen. Tonic SCS did not induce a significant increase in BOLD signal levels in these areas. Conclusions In conclusion, active recharge burst and tonic SCS have different effects on the intensity and localization of SCS-induced activation responses in the brain. This work demonstrates that active recharge burst is another waveform that can engage brain areas associated with cognitive-emotional aspects of pain as well as areas associated with location and intensity of pain. Previous studies showing similar engagement used only passive recharge burst

    Active Recharge Burst and Tonic Spinal Cord Stimulation Engage Different Supraspinal Mechanisms:A Functional Magnetic Resonance Imaging Study in Peripherally Injured Chronic Neuropathic Rats

    No full text
    Objectives To assess the supraspinal working mechanisms of the burst spinal cord stimulation (SCS) mode, we used functional magnetic resonance imaging (fMRI) in chronic neuropathic rats. We hypothesized that active recharge burst SCS would induce a more profound blood oxygenation level-dependent (BOLD) signal increase in areas associated with cognitive-emotional aspects of pain, as compared to tonic SCS. Methods Sprague Dawley rats (n = 17) underwent a unilateral partial sciatic nerve ligation, which resulted in chronic neuropathic pain. Quadripolar SCS electrodes were epidurally positioned on top of the dorsal columns at Th13. Isoflurane-anesthetized (1.5%) rats received either tonic SCS (n = 8) or burst SCS (n = 9) at 66% of motor threshold. BOLD fMRI was conducted before, during, and after SCS using a 9.4-T horizontal bore scanner. Results Overall, both tonic and burst SCS induced a significant increase of BOLD signal levels in areas associated with the location and intensity of pain, and areas associated with cognitive-emotional aspects of pain. Additionally, burst SCS significantly increased BOLD signal levels in the raphe nuclei, nucleus accumbens, and caudate putamen. Tonic SCS did not induce a significant increase in BOLD signal levels in these areas. Conclusions In conclusion, active recharge burst and tonic SCS have different effects on the intensity and localization of SCS-induced activation responses in the brain. This work demonstrates that active recharge burst is another waveform that can engage brain areas associated with cognitive-emotional aspects of pain as well as areas associated with location and intensity of pain. Previous studies showing similar engagement used only passive recharge burst
    corecore