7 research outputs found

    Ligand Valency Affects Transcytosis, Recycling and Intracellular Trafficking Mediated by the Neonatal Fc Receptor

    Get PDF
    The neonatal Fc receptor (FcRn) transports IgG across epithelial cell barriers to provide maternal antibodies to offspring and serves as a protection receptor by rescuing endocytosed IgG and albumin from lysosomal degradation. Here we describe the generation of polarized Madin–Darby canine kidney (MDCK) cells expressing rat FcRn (rFcRn) to investigate the potential requirement for ligand bivalency in FcRn-mediated transport. The rFcRn-MDCK cells bind, internalize and bidirectionally transcytose the bivalent ligands IgG and Fc across polarized cell monolayers. However, they cannot be used to study FcRn-mediated transport of the monovalent ligand albumin, as we observe no specific binding, internalization or transcytosis of rat albumin. To address whether ligand bivalency is required for transport, the ability of rFcRn to transcytose and recycle wild-type Fc homodimers (wtFc; two FcRn-binding sites) and a heterodimeric Fc (hdFc; one FcRn-binding site) was compared. We show that ligand bivalency is not required for transcytosis or recycling, but that wtFc is transported more efficiently than hdFc, particularly at lower concentrations. We also demonstrate that hdFc and wtFc have different intracellular fates, with more hdFc than wtFc being trafficked to lysosomes and degraded, suggesting a role for avidity effects in FcRn-mediated IgG transport

    A freeze substitution fixation-based gold enlarging technique for EM studies of endocytosed nanogold-labeled molecules

    Get PDF
    We have developed methods to locate individual ligands that can be used for electron microscopy studies of dynamic events during endocytosis and subsequent intracellular trafficking. The methods are based on enlargement of 1.4 nm Nanogold attached to an endocytosed ligand. Nanogold, a small label that does not induce misdirection of ligand–receptor complexes, is ideal for labeling ligands endocytosed by live cells, but is too small to be routinely located in cells by electron microscopy. Traditional pre-embedding enhancement protocols to enlarge Nanogold are not compatible with high pressure freezing/freeze substitution fixation (HPF/FSF), the most accurate method to preserve ultrastructure and dynamic events during trafficking. We have developed an improved enhancement procedure for chemically fixed samples that reduced auto-nucleation, and a new pre-embedding gold enlarging technique for HPF/FSF samples that preserved contrast and ultrastructure and can be used for high-resolution tomography. We evaluated our methods using labeled Fc as a ligand for the neonatal Fc receptor. Attachment of Nanogold to Fc did not interfere with receptor binding or uptake, and gold-labeled Fc could be specifically enlarged to allow identification in 2D projections and in tomograms. These methods should be broadly applicable to many endocytosis and transcytosis studies

    Design and Expression of a Dimeric Form of the Human Immunodeficiency Virus Type 1 Antibody 2G12 with Increased Neutralization Potency

    Get PDF
    The antigen-binding fragment of the broadly neutralizing Human Immunodeficiency Virus Type 1 (HIV-1) antibody 2G12 has an unusual 3D domain-swapped structure with two aligned combining sites that facilitates recognition of its carbohydrate epitope on gp120. When expressed as an intact IgG, 2G12 formed typical IgG monomers containing two combining sites and a small fraction of a higher molecular weight species, which showed a significant increase in neutralization potency (50- to 80-fold compared to 2G12 monomer) across a range of clade A and B strains of HIV-1. Here we show that the higher molecular weight species corresponds to a 2G12 dimer containing four combining sites, and present a model for how intermolecular 3D domain swapping could create a 2G12 dimer. Based on the structural model for a 3D domain-swapped 2G12 dimer, we designed and tested a series of 2G12 mutants predicted to increase the ratio of 2G12 dimer to monomer. We report a mutation that effectively increases the 2G12 dimer/monomer ratio without decreasing the expression yield. Increasing the proportion of 2G12 dimer compared with monomer could lead to a more potent reagent for gene therapy or passive immunization

    Design and Expression of a Dimeric Form of Human Immunodeficiency Virus Type 1 Antibody 2G12 with Increased Neutralization Potency â–¿

    No full text
    The antigen-binding fragment of the broadly neutralizing human immunodeficiency virus type 1 (HIV-1) antibody 2G12 has an unusual three-dimensional (3D) domain-swapped structure with two aligned combining sites that facilitates recognition of its carbohydrate epitope on gp120. When expressed as an intact immunoglobulin G (IgG), 2G12 formed typical IgG monomers containing two combining sites and a small fraction of a higher-molecular-weight species, which showed a significant increase in neutralization potency (50- to 80-fold compared to 2G12 monomer) across a range of clade A and B strains of HIV-1. Here we show that the higher-molecular-weight species corresponds to a 2G12 dimer containing four combining sites and present a model for how intermolecular 3D domain swapping could create a 2G12 dimer. Based on the structural model for a 3D domain-swapped 2G12 dimer, we designed and tested a series of 2G12 mutants predicted to increase the ratio of 2G12 dimer to monomer. We report a mutation that effectively increases the 2G12 dimer/monomer ratio without decreasing the expression yield. Increasing the proportion of 2G12 dimer compared to monomer could lead to a more potent reagent for gene therapy or passive immunization
    corecore