16 research outputs found

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Optimal Confidence Intervals for the Relative Risk and Odds Ratio

    No full text
    The relative risk and odds ratio are widely used in many fields, including biomedical research, to compare two treatments. Extensive research has been done to infer the two parameters through approximate or exact confidence intervals. However, these intervals may be liberal or conservative. A natural question is whether the intervals can be further improved in maintaining the correct confidence coefficient of an approximate interval or shortening an exact but conservative interval. In this article, when two independent binomials are observed we offer an effort to improve any of the existing intervals by applying the -function method. In particular, if the given interval is approximate, then the improved interval is exact; if the given interval is exact, then the improved interval is a subset of the given interval. This method is also applied multiple times to the improved intervals until the final resultant interval cannot be shortened any further. To demonstrate the effectiveness of the method, we use three real datasets to illustrate in detail how several good intervals in practice are improved. Two exact intervals are then recommended for estimating each of the two parameters in different scenarios

    Optimal Confidence Intervals for the Relative Risk and Odds Ratio

    No full text
    The relative risk and odds ratio are widely used in many fields, including biomedical research, to compare two treatments. Extensive research has been done to infer the two parameters through approximate or exact confidence intervals. However, these intervals may be liberal or conservative. A natural question is whether the intervals can be further improved in maintaining the correct confidence coefficient of an approximate interval or shortening an exact but conservative interval. In this article, when two independent binomials are observed we offer an effort to improve any of the existing intervals by applying the -function method. In particular, if the given interval is approximate, then the improved interval is exact; if the given interval is exact, then the improved interval is a subset of the given interval. This method is also applied multiple times to the improved intervals until the final resultant interval cannot be shortened any further. To demonstrate the effectiveness of the method, we use three real datasets to illustrate in detail how several good intervals in practice are improved. Two exact intervals are then recommended for estimating each of the two parameters in different scenarios

    The Development of Molecular Markers for Peach Skin Blush and Their Application in Peach Breeding Practice

    No full text
    Peach is an economically important fruit tree crop worldwide. The external color of the fruit governs the peach price, especially in fruits with different degrees of blush. Molecular marker-assisted breeding has become a necessary part of modern breeding practices, increasing their efficiency. Although the key related genes responsible for peel coloration have been found in peach, corresponding molecular markers have not been widely used in peach breeding. The development of molecular markers for peach peel color needs to be advanced and implemented in practice. This study aimed to explore the variation related to peach skin color and to develop molecular markers linked to these variants that can be used in breeding. By analyzing the expression of anthocyanin synthesis-related and regulatory genes, we confirmed that MYB10.1 is a key gene controlling skin color. We further identified that 5243 bp insertion and 483 bp deletion in the MYB10.1 promoter was highly associated with peach skin color phenotypes. In addition, we identified one transposon insertion mutation at the −2706 bp position of the MYB10.1 promoter associated with the non-red fruit skin trait and developed a molecular marker for validation. The insertion size amplified from the ‘ShiYuBaiTao’ genome DNA was approximately 3.5 kb. However, it explained a lower percentage of the non-red skin phenotype variance in peach, at 36.1%, compared to MYB10.1-2/MYB10.1-2 in this study. Based on these results, we propose that MYB10.1-2/MYB10.1-2 should not only be the only non-red skin genotype assessed but should also be combined with other molecular makers to increase the prediction accuracy of peach skin color

    Flexible Fusion Structure-Based Performance Optimization Learning for Multisensor Target Tracking

    No full text
    Compared with the fixed fusion structure, the flexible fusion structure with mixed fusion methods has better adjustment performance for the complex air task network systems, and it can effectively help the system to achieve the goal under the given constraints. Because of the time-varying situation of the task network system induced by moving nodes and non-cooperative target, and limitations such as communication bandwidth and measurement distance, it is necessary to dynamically adjust the system fusion structure including sensors and fusion methods in a given adjustment period. Aiming at this, this paper studies the design of a flexible fusion algorithm by using an optimization learning technology. The purpose is to dynamically determine the sensors’ numbers and the associated sensors to take part in the centralized and distributed fusion processes, respectively, herein termed sensor subsets selection. Firstly, two system performance indexes are introduced. Especially, the survivability index is presented and defined. Secondly, based on the two indexes and considering other conditions such as communication bandwidth and measurement distance, optimization models for both single target tracking and multi-target tracking are established. Correspondingly, solution steps are given for the two optimization models in detail. Simulation examples are demonstrated to validate the proposed algorithms

    Analysis of Space-Borne GPS Data Quality and Evaluation of Precise Orbit Determination for COSMIC-2 Mission Based on Reduced Dynamic Method

    No full text
    COSMIC-2 is a remote sensing satellite mission that mainly provides scientific data for weather forecasting, ionosphere, and climate research. High precise orbit is the basis for the application of remote sensing satellite data. In order to realize the precise orbit determination (POD) of COSMIC-2, we have assessed the quality of space-borne GPS observation in detail, including the utilization of GPS observations, cycle slip ratio (o/slps), multipath error, single-noise ratio (SNR) and ionospheric delay rate (IOD) of the data, realized the POD of COSMIC-2 with the reduced dynamic (RD) method, and evaluated the accuracy of the solved orbit by means of the carrier-phase residual, overlapping orbit comparison and the reference orbit comparison. The data quality assessments show that the data is less affected by the multipath effect, the utilization of the data is low, cycle slips occur frequently, and the carrier-phase data is often interrupted. The POD results indicate that the root mean square (RMS) values of the carrier-phase residuals of six COSMIC-2 satellites are between 6.0 mm and 7.5 mm, The mean RMS values of the overlapping orbit are better than 0.92 cm, 1.33 cm and 1.03 cm in the radial (R), tangential (T) and normal (N) directions respectively, and the mean RMS values of the six satellites in the 3D direction are between 1.38 cm and 1.75 cm. The mean RMS values in R, T and N directions orbit determination accuracy of the reference orbit comparison are better than 5.61 cm, 6.59 cm and 2.29 cm respectively, and the mean RMS values of the six satellites in the 3D direction are between 7.35 cm and 8.79 cm

    Analysis of Space-Borne GPS Data Quality and Evaluation of Precise Orbit Determination for COSMIC-2 Mission Based on Reduced Dynamic Method

    No full text
    COSMIC-2 is a remote sensing satellite mission that mainly provides scientific data for weather forecasting, ionosphere, and climate research. High precise orbit is the basis for the application of remote sensing satellite data. In order to realize the precise orbit determination (POD) of COSMIC-2, we have assessed the quality of space-borne GPS observation in detail, including the utilization of GPS observations, cycle slip ratio (o/slps), multipath error, single-noise ratio (SNR) and ionospheric delay rate (IOD) of the data, realized the POD of COSMIC-2 with the reduced dynamic (RD) method, and evaluated the accuracy of the solved orbit by means of the carrier-phase residual, overlapping orbit comparison and the reference orbit comparison. The data quality assessments show that the data is less affected by the multipath effect, the utilization of the data is low, cycle slips occur frequently, and the carrier-phase data is often interrupted. The POD results indicate that the root mean square (RMS) values of the carrier-phase residuals of six COSMIC-2 satellites are between 6.0 mm and 7.5 mm, The mean RMS values of the overlapping orbit are better than 0.92 cm, 1.33 cm and 1.03 cm in the radial (R), tangential (T) and normal (N) directions respectively, and the mean RMS values of the six satellites in the 3D direction are between 1.38 cm and 1.75 cm. The mean RMS values in R, T and N directions orbit determination accuracy of the reference orbit comparison are better than 5.61 cm, 6.59 cm and 2.29 cm respectively, and the mean RMS values of the six satellites in the 3D direction are between 7.35 cm and 8.79 cm

    Global Ionospheric Disturbance Propagation and Vertical Ionospheric Oscillation Triggered by the 2022 Tonga Volcanic Eruption

    No full text
    The Tonga volcano erupted on 15 January 2022, at 04:15:45 UTC, which significantly influenced the atmosphere and space environment, at the same time, an unprecedented opportunity to monitor ionospheric anomalies is provided by its powerful eruption. In current studies of traveling ionospheric disturbance (TID) triggered by the 2022 Tonga volcanic eruption, the particular phenomenon of ionospheric disturbances in various parts of the world has not been reasonably explained, and the vertical ionospheric disturbances are still not effectively detected. In this paper, we calculate the high-precision slant total electron content (STEC) from more than 3000 ground-based GPS stations distributed around the world, then we obtain the radio occultation (RO) data from near-field COSMIC-2 profiles and investigate the horizontal TID and the vertical ionospheric disturbances by the singular spectrum analysis (SSA). Horizontal TID propagation captured by GPS STEC results indicates that acoustic-gravity waves dominate the energy input at the beginning of the ionospheric disturbance with an approximate speed of 1050 m/s initially. With the dissipation of the shock energy, lamb waves become a dominant mode of ionospheric disturbances, moving at a more stable speed of about 326 m/s to a range of 16,000 km beyond the far-field. Local characteristics are evident during the disturbance, such as the ionospheric conjugation in Australia and the rapid decay of TID in Europe. The shock-Lamb-tsunami waves’ multi-fluctuation coupling is recorded successively from the COSMIC-2 RO observation data. The shock and Lamb waves can perturb the whole ionospheric altitude. In contrast, the disturbance caused by tsunami waves is much smaller than that of acoustic-gravity waves and Lamb waves. In addition, influenced by the magnetic field, the propagation speed of TID induced by Lamb waves is higher towards the northern hemisphere than towards the southern hemisphere

    Application of high-precision 3D seismic technology to shale gas exploration: A case study of the large Jiaoshiba shale gas field in the Sichuan Basin

    Get PDF
    The accumulation pattern of the marine shale gas in South China is different from that in North America. The former has generally thin reservoirs and complex preservation conditions, so it is difficult to make a fine description of the structural features of shale formations and to reflect accurately the distribution pattern of high-quality shale by using the conventional 2D and 3D seismic exploration technology, which has an adverse effect on the successful deployment of horizontal wells. In view of this, high-precision 3D seismic prospecting focusing on lithological survey was implemented to make an accurate description of the distribution of shale gas sweet spots so that commercial shale gas production can be obtained. Therefore, due to the complex seismic geological condition of Jiaoshiba area in Fuling, SE Sichuan Basin, the observation system of high-precision 3D seismic acquisition should have such features as wide-azimuth angles, small trace intervals, high folds, uniform vertical and horizontal coverage and long spread to meet the needs of the shale gas exploration in terms of structural interpretation, lithological interpretation and fracture prediction. Based on this idea, the first implemented high-precision 3D seismic exploration project in Jiaoshiba area played an important role in the discovery of the large Jiaoshiba shale gas field. Considering that the high-quality marine shale in the Sichuan Basin shows the characteristics of multi-layer development from the Silurian system to the Cambrian system, the strategy of shale gas stereoscopic exploration should be implemented to fully obtain the oil and gas information of the shallow, medium and deep strata from the high-precision 3D seismic data, and ultimately to expand the prospecting achievements in an all-round way to balance the high upstream exploration cost, and to continue to push the efficient shale gas exploration and development process in China
    corecore