39 research outputs found

    Transfer nonnegative matrix factorization for image representation

    Get PDF
    Nonnegative Matrix Factorization (NMF) has received considerable attention due to its psychological and physiological interpretation of naturally occurring data whose representation may be parts based in the human brain. However, when labeled and unlabeled images are sampled from different distributions, they may be quantized into different basis vector space and represented in different coding vector space, which may lead to low representation fidelity. In this paper, we investigate how to extend NMF to cross-domain scenario. We accomplish this goal through TNMF - a novel semi-supervised transfer learning approach. Specifically, we aim to minimize the distribution divergence between labeled and unlabeled images, and incorporate this criterion into the objective function of NMF to construct new robust representations. Experiments show that TNMF outperforms state-of-the-art methods on real dataset

    First-principles study of oxygen vacancy defects in orthorhombic Hf0.5_{0.5}Zr0.5_{0.5}O2_2/SiO2_2/Si gate stack

    Full text link
    The gate defect of the ferroelectric HfO2_2-based Si field-effect transistor (Si FeFET) plays a dominant role in its reliability issue. The first-principles calculations are an effective method for the atomic-scale understanding of gate defects. However, the first-principles study on the defects of FeFET gate stacks, i.e., metal/orthorhombic-Hf0.5_{0.5}Zr0.5_{0.5}O2_2/SiO2_2/Si structure, has not been reported so far. The key challenge is the construction of metal/orthorhombic-Hf0.5_{0.5}Zr0.5_{0.5}O2_2/SiO2_2/Si gate stack models. Here, we use the Hf0.5_{0.5}Zr0.5_{0.5}O2_2(130) high-index crystal face as the orthorhombic ferroelectric layer and construct a robust atomic structure of the orthorhombic-Hf0.5_{0.5}Zr0.5_{0.5}O2_2/SiO2_2/Si gate stack without any gap states. Its high structural stability is ascribed to the insulated interface. The calculated band offsets show that this gate structure is of the type-I band alignment. Furthermore, the formation energies and charge transition levels (CTLs) of defects reveal that the oxygen vacancy defects are more favorable to form compared with other defects such as oxygen interstitial and Hf/Zr vacancy, and their CTLs are mainly localized near the Si conduction band minimum and valence band maximum, in agreement with the reported experimental results. The oxygen vacancy defects are responsible for charge trapping/de-trapping behavior in Si FeFET. This work provides an insight into gate defects and paves the way to carry out the first-principles study of ferroelectric HfO2_2-based Si FeFET.Comment: 18 pages, 5 figure

    FPGA and ASIC implementation of reliable and effective architecture for a LTE downlink transmitter

    No full text

    A Novel QoS-Aware A-MPDU Aggregation Scheduler for Unsaturated IEEE802.11n/ac WLANs

    No full text
    Improving the quality of service (QoS) performance to support existing and upcoming real-time applications is critical for IEEE 802.11n/ac devices. The mechanisms of the media access control (MAC) layer, including the aggregate MAC protocol data unit (A-MPDU) aggregation, greatly affect the QoS performance in wireless local area networks (WLANs). To investigate the impact of the aggregation level on the QoS performance for real-time multimedia applications, a novel end-to-end delay model for the unsaturated settings is proposed in this paper. The presented model considers the gathering procedure of packets, queuing behaviors, and transmissions using the RTS/CTS (request to send/clear to send) mechanism on error-prone channels. Based on the model, a novel QoS-aware A-MPDU aggregation scheduler for IEEE802.11n/ac WLANs was shown to obtain better QoS performance with lower latency and less packet loss, a larger capacity to hold higher data rates, and more working nodes. The validation of the proposed model and the promotion of the proposed scheduler are well benchmarked by ns-3

    Investigation of Reducing Interface State Density in 4H-SiC by Increasing Oxidation Rate

    No full text
    Detailed investigations of the pre-oxidation phosphorus implantation process are required to increase the oxidation rate in 4H-SiC metal-oxide-semiconductor (MOS) capacitors. This study focuses on the SiO2/SiC interface characteristics of pre-oxidation using phosphorus implantation methods. The inversion channel mobility of a metal-oxide-semiconductor field effect transistor (MOSFET) was decreased via a high interface state density and the coulomb-scattering mechanisms of the carriers. High-resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM) were used to evaluate the SiO2/SiC interface’s morphology. According to the energy-dispersive X-ray spectrometry (EDS) results, it was found that phosphorus implantation reduced the accumulation of carbon at the SiO2/SiC interface. Moreover, phosphorus distributed on the SiO2/SiC interface exhibited a Gaussian profile, and the nitrogen concentration at the SiO2/SiC interface may be correlated with the content of phosphorus. This research presents a new approach for increasing the oxidation rate of SiC and reducing the interface state density

    Enhancement of pattern quality in maskless plasmonic lithography via spatial loss modulation

    No full text
    Abstract Plasmonic lithography, which uses the evanescent electromagnetic (EM) fields to generate image beyond the diffraction limit, has been successfully demonstrated as an alternative lithographic technology for creating sub-10 nm patterns. However, the obtained photoresist pattern contour in general exhibits a very poor fidelity due to the near-field optical proximity effect (OPE), which is far below the minimum requirement for nanofabrication. Understanding the near-field OPE formation mechanism is important to minimize its impact on nanodevice fabrication and improve its lithographic performance. In this work, a point-spread function (PSF) generated by a plasmonic bowtie-shaped nanoaperture (BNA) is employed to quantify the photon-beam deposited energy in the near-field patterning process. The achievable resolution of plasmonic lithography has successfully been enhanced to approximately 4 nm with numerical simulations. A field enhancement factor (F) as a function of gap size is defined to quantitatively evaluate the strong near-field enhancement effect excited by a plasmonic BNA, which also reveals that the high enhancement of the evanescent field is due to the strong resonant coupling between the plasmonic waveguide and the surface plasmon waves (SPWs). However, based on an investigation of the physical origin of the near-field OPE, and the theoretical calculations and simulation results indicate that the evanescent-field-induced rapid loss of high-k information is one of the main optical contributors to the near-field OPE. Furthermore, an analytic formula is introduced to quantitatively analyze the effect of the rapidly decaying feature of the evanescent field on the final exposure pattern profile. Notably, a fast and effective optimization method based on the compensation principle of the exposure dose is proposed to reduce the pattern distortion by modulating the exposure map with dose leveling. The proposed pattern quality enhancement method can open new possibilities in the manufacture of nanostructures with ultrahigh pattern quality via plasmonic lithography, which would find potentially promising applications in high density optical storage, biosensors, and plasmonic nanofocusing

    Pulse Wave Analysis Method of Cardiovascular Parameters Extraction for Health Monitoring

    No full text
    Objective: A pulse waveform is regarded as an information carrier of the cardiovascular system, which contains multiple interactive cardiovascular parameters reflecting physio-pathological states of bodies. Hence, multiple parameter analysis is increasingly meaningful to date but still cannot be easily achieved one by one due to the complex mapping between waveforms. This paper describes a new analysis method based on waveform recognition aimed for extracting multiple cardiovascular parameters to monitor public health. The objective of this new method is to deduce multiple cardiovascular parameters for a target pulse waveform based on waveform recognition to a most similar reference waveform in a given database or pattern library. Methods: The first part of the methodology includes building the sub-pattern libraries and training classifier. This provides a trained classifier and the sub-pattern library with reference pulse waveforms and known parameters. The second part is waveform analysis. The target waveform will be classified and output a state category being used to select the corresponding sub-pattern library with the same state. This will reduce subsequent recognition scope and computation costs. The mainstay of this new analysis method is improved dynamic time warping (DTW). This improved DTW and K-Nearest Neighbors (KNN) were applied to recognize the most similar waveform in the pattern library. Hence, cardiovascular parameters can be assigned accordingly from the most similar waveform in the pattern library. Results: Four hundred and thirty eight (438) randomly selected pulse waveforms were tested to verify the effectiveness of this method. The results show that the classification accuracy is 96.35%. Using statistical analysis to compare the target sample waveforms and the recognized reference ones from within the pattern library, most correlation coefficients are beyond 0.99. Each set of cardiovascular parameters was assessed using the Bland-Altman plot. The extracted cardiovascular parameters are in strong agreement with the original verifying the effectiveness of this new approach. Conclusion: This new method using waveform recognition shows promising results that can directly extract multiple cardiovascular parameters from waveforms with high accuracy. This new approach is efficient and effective and is very promising for future continuous monitoring of cardiovascular health

    A 200-MS/s 10-Bit SAR ADC Applied in WLAN Systems

    No full text
    This paper introduces a new high-performance successive approximation register (SAR) analog-to-digital converter (ADC) designed for high-speed and low-power wireless local area network (WLAN) applications using a SMIC 55 nm 1p8m CMOS process. The design employs several innovative techniques, including an improved bootstrap switch with high linearity, a 4-reference voltage method to minimize capacitive digital-to-analog converter (CDAC) mismatch, a kickback-canceling comparator to eliminate kick-back noise, and redundant design-assisted window-opening SAR logic to decrease conversion time. Experimental results reveal that the proposed ADC achieves an impressive signal-to-noise and distortion ratio (SNDR) of 55.3 dB and a spurious-free dynamic range (SFDR) of 66.6 dB at a sampling rate of 200 MHz with Nyquist frequency input while consuming a power of 2.8 mW at a 1.2 V power supply. This corresponds to a figure-of-merit (FoM) value of 29 fJ/conversion-step. Thanks to the incorporation of the 4-reference voltage method, the ADC demonstrates a significant area advantage compared to other designs with similar FOM values utilizing more advanced processes, occupying a mere 0.008 mm2 of core area
    corecore