4 research outputs found
A new semi-analytical flow model for multi-branch well testing in natural gas hydrates
This paper presents a new semi-analytical solution and the related methodology to analyze the pressure behavior of multi-branch wells produced from natural gas hydrates. For constant bottom-hole pressure production, the transient flow solution is obtained by Laplace transforms. The interference among various branches is investigated using the superposition principle. A simplified form of the proposed model is validated using published analytical solutions. The complete flow profile can be divided into nine distinct regimes: wellbore storage and skin, vertical radial flow, linear flow, pseudo-radial flow, composite flow, dissociated flow, transitional flow, improvement flow and stress-sensitive flow. A well’s multi-branch structure governs the vertical radial and the linear flow regimes. In our model, a dynamic interface divides the natural gas hydrates deposit into dissociated and non-dissociated regions. Natural gas hydrates formation properties govern the compositeeffect, dissociated, transitional, and improvement flow regimes. A dissociation coefficient governs the difference in flow resistance between dissociated and non-dissociated natural gas hydrates regions. The dissociated-zone radius affects the timing of these flow regimes. Conversion of natural gas hydrates to natural gas becomes instantaneous as the dissociation coefficient increases. The pressure derivative exhibits the same features as a homogeneous formation. The natural gas hydrates parameter values in the Shenhu area of the South China Sea cause the prominent dissociated flow regime to conceal the later transitional and improvement flow regimes. Due to the maximum practical well-test duration limitation, the first five flow regimes (through composite flow) are more likely to appear in practice than later flow regimes.Cited as: Chu, H., Zhang, J., Zhang, L., Ma, T, Gao Y., Lee, W. J. A new semi-analytical flow model for multi-branch well testing in natural gas hydrates. Advances in Geo-Energy Research, 2023, 7(3): 176-188. https://doi.org/10.46690/ager.2023.03.0
Well Testing Methodology for Multiple Vertical Wells with Well Interference and Radially Composite Structure during Underground Gas Storage
To achieve the goal of decarbonized energy and greenhouse gas reduction, underground gas storage (UGS) has proven to be an important source for energy storage and regulation of natural gas supply. The special working conditions in UGS cause offset vertical wells to easily interfere with target vertical wells. The current well testing methodology assumes that there is only one well, and the interference from offset wells is ignored. This paper proposes a solution and analysis method for the interference from adjacent vertical wells to target vertical wells by analytical theory. The model solution is obtained by the solution with a constant rate and the Laplace transform method. The pressure superposition is used to deal with the interference from adjacent vertical wells. The model reliability in the gas injection and production stages is verified by commercial software. Pressure analysis shows that the heterogeneity and interference in the gas storage are caused by long-term gas injection and production. As both the adjacent well and the target well are in the gas production stage, the pressure derivative value in radial flow is related to production rate, mobility ratio, and 0.5. Gas injection from offset wells will cause the pressure derivative to drop later. Multiple vertical wells from the Hutubi UGS are used to illustrate the properties of vertical wells and the formation
Well Testing Methodology for Multiple Vertical Wells with Well Interference and Radially Composite Structure during Underground Gas Storage
To achieve the goal of decarbonized energy and greenhouse gas reduction, underground gas storage (UGS) has proven to be an important source for energy storage and regulation of natural gas supply. The special working conditions in UGS cause offset vertical wells to easily interfere with target vertical wells. The current well testing methodology assumes that there is only one well, and the interference from offset wells is ignored. This paper proposes a solution and analysis method for the interference from adjacent vertical wells to target vertical wells by analytical theory. The model solution is obtained by the solution with a constant rate and the Laplace transform method. The pressure superposition is used to deal with the interference from adjacent vertical wells. The model reliability in the gas injection and production stages is verified by commercial software. Pressure analysis shows that the heterogeneity and interference in the gas storage are caused by long-term gas injection and production. As both the adjacent well and the target well are in the gas production stage, the pressure derivative value in radial flow is related to production rate, mobility ratio, and 0.5. Gas injection from offset wells will cause the pressure derivative to drop later. Multiple vertical wells from the Hutubi UGS are used to illustrate the properties of vertical wells and the formation
Structural characteristics and deep-water hydrocarbon accumulation model of the Scotian Basin, Eastern Canada
Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is still insufficient, which constrains the oil and gas exploration in deep-water areas. Based on comprehensive data of magnetic anomalies, seismic survey, and drilling, this study determines the structure characteristics of the Scotian Basin and its hydrocarbon accumulation conditions in deep waters and evaluates the deep-water hydrocarbon exploration potential. The transform faults and basement structures in the northern basin control the sedimentary framework showing thick strata in east and thin strata in west of the basin. The bowl-shaped depression formed by thermal subsidence during the transitional phase and the confined environment (micro basins) caused by salt tectonics provide favorable conditions for the development of source rocks during the depression stage (also referred to as the depression period sequence) of the basin. The progradation of large shelf-margin deltas during the drift phase and steep continental slope provide favorable conditions for the deposition of slope-floor fans on continental margins of the basin. Moreover, the source-reservoir assemblage comprising the source rocks within the depression stage and the turbidite sandstones on the continental margin in the deep waters may form large deep-water turbidite sandstone reservoirs. This study will provide a valuable reference for the deep-water hydrocarbon exploration in the Scotian Basin