13,473 research outputs found

    Doubled Conformal Compactification

    Full text link
    We use Weyl transformations between the Minkowski spacetime and dS/AdS spacetime to show that one cannot well define the electrodynamics globally on the ordinary conformal compactification of the Minkowski spacetime (or dS/AdS spacetime), where the electromagnetic field has a sign factor (and thus is discountinuous) at the light cone. This problem is intuitively and clearly shown by the Penrose diagrams, from which one may find the remedy without too much difficulty. We use the Minkowski and dS spacetimes together to cover the compactified space, which in fact leads to the doubled conformal compactification. On this doubled conformal compactification, we obtain the globally well-defined electrodynamics.Comment: 14 pages, 4 figure

    The Quasi-normal Modes of Charged Scalar Fields in Kerr-Newman black hole and Its Geometric Interpretation

    Get PDF
    It is well-known that there is a geometric correspondence between high-frequency quasi-normal modes (QNMs) and null geodesics (spherical photon orbits). In this paper, we generalize such correspondence to charged scalar field in Kerr-Newman space-time. In our case, the particle and black hole are all charged, so one should consider non-geodesic orbits. Using the WKB approximation, we find that the real part of quasi-normal frequency corresponds to the orbits frequency, the imaginary part of the frequency corresponds to the Lyapunov exponent of these orbits and the eigenvalue of angular equation corresponds to carter constant. From the properties of the imaginary part of quasi-normal frequency of charged massless scalar field, we can still find that the QNMs of charged massless scalar field possess the zero damping modes in extreme Kerr-Newman spacetime under certain condition which has been fixed in this paper.Comment: 30 pages, many figures, to appear in JHE

    Neural Feedback Scheduling of Real-Time Control Tasks

    Full text link
    Many embedded real-time control systems suffer from resource constraints and dynamic workload variations. Although optimal feedback scheduling schemes are in principle capable of maximizing the overall control performance of multitasking control systems, most of them induce excessively large computational overheads associated with the mathematical optimization routines involved and hence are not directly applicable to practical systems. To optimize the overall control performance while minimizing the overhead of feedback scheduling, this paper proposes an efficient feedback scheduling scheme based on feedforward neural networks. Using the optimal solutions obtained offline by mathematical optimization methods, a back-propagation (BP) neural network is designed to adapt online the sampling periods of concurrent control tasks with respect to changes in computing resource availability. Numerical simulation results show that the proposed scheme can reduce the computational overhead significantly while delivering almost the same overall control performance as compared to optimal feedback scheduling.Comment: To appear in International Journal of Innovative Computing, Information and Contro

    Fuzzy Feedback Scheduling of Resource-Constrained Embedded Control Systems

    Full text link
    The quality of control (QoC) of a resource-constrained embedded control system may be jeopardized in dynamic environments with variable workload. This gives rise to the increasing demand of co-design of control and scheduling. To deal with uncertainties in resource availability, a fuzzy feedback scheduling (FFS) scheme is proposed in this paper. Within the framework of feedback scheduling, the sampling periods of control loops are dynamically adjusted using the fuzzy control technique. The feedback scheduler provides QoC guarantees in dynamic environments through maintaining the CPU utilization at a desired level. The framework and design methodology of the proposed FFS scheme are described in detail. A simplified mobile robot target tracking system is investigated as a case study to demonstrate the effectiveness of the proposed FFS scheme. The scheme is independent of task execution times, robust to measurement noises, and easy to implement, while incurring only a small overhead.Comment: To appear in International Journal of Innovative Computing, Information and Contro

    SIMBA: scalable inversion in optical tomography using deep denoising priors

    Full text link
    Two features desired in a three-dimensional (3D) optical tomographic image reconstruction algorithm are the ability to reduce imaging artifacts and to do fast processing of large data volumes. Traditional iterative inversion algorithms are impractical in this context due to their heavy computational and memory requirements. We propose and experimentally validate a novel scalable iterative mini-batch algorithm (SIMBA) for fast and high-quality optical tomographic imaging. SIMBA enables highquality imaging by combining two complementary information sources: the physics of the imaging system characterized by its forward model and the imaging prior characterized by a denoising deep neural net. SIMBA easily scales to very large 3D tomographic datasets by processing only a small subset of measurements at each iteration. We establish the theoretical fixedpoint convergence of SIMBA under nonexpansive denoisers for convex data-fidelity terms. We validate SIMBA on both simulated and experimentally collected intensity diffraction tomography (IDT) datasets. Our results show that SIMBA can significantly reduce the computational burden of 3D image formation without sacrificing the imaging quality.https://arxiv.org/abs/1911.13241First author draf

    Regularized Fourier ptychography using an online plug-and-play algorithm

    Full text link
    The plug-and-play priors (PnP) framework has been recently shown to achieve state-of-the-art results in regularized image reconstruction by leveraging a sophisticated denoiser within an iterative algorithm. In this paper, we propose a new online PnP algorithm for Fourier ptychographic microscopy (FPM) based on the accelerated proximal gradient method (APGM). Specifically, the proposed algorithm uses only a subset of measurements, which makes it scalable to a large set of measurements. We validate the algorithm by showing that it can lead to significant performance gains on both simulated and experimental data.https://arxiv.org/abs/1811.00120Published versio

    Regularized Fourier ptychography using an online plug-and-play algorithm

    Full text link
    The plug-and-play priors (PnP) framework has been recently shown to achieve state-of-the-art results in regularized image reconstruction by leveraging a sophisticated denoiser within an iterative algorithm. In this paper, we propose a new online PnP algorithm for Fourier ptychographic microscopy (FPM) based on the accelerated proximal gradient method (APGM). Specifically, the proposed algorithm uses only a subset of measurements, which makes it scalable to a large set of measurements. We validate the algorithm by showing that it can lead to significant performance gains on both simulated and experimental data.https://arxiv.org/abs/1811.00120Published versio

    DNA Methylation Heterogeneity Patterns in Breast Cancer Cell Lines

    Get PDF
    Heterogeneous DNA methylation patterns are linked to tumor growth. In order to study DNA methylation heterogeneity patterns for breast cancer cell lines, we comparatively study four metrics: variance, I² statistic, entropy, and methylation state. Using the categorical metric methylation state, we select the two most heterogeneous states to identify genes that directly affect tumor suppressor genes and high- or moderate-risk breast cancer genes. Utilizing the Gene Set Enrichment Analysis software and the ConsensusPath Database visualization tool, we generate integrated gene networks to study biological relations of heterogeneous genes. This analysis has allowed us to contribute 19 potential breast cancer biomarker genes to cancer databases by locating “hub genes” – heterogeneous genes of significant biological interactions, selected from numerous cancer modules. We have discovered a considerable relationship between these hub genes and heterogeneously methylated oncogenes. Our results have many implications for further heterogeneity analyses of methylation patterns and early detection of breast cancer susceptibility
    • …
    corecore