30,387 research outputs found
Spontaneous Formation of Stable Capillary Bridges for Firming Compact Colloidal Microstructures in Phase Separating Liquids: A Computational Study
Computer modeling and simulations are performed to investigate capillary
bridges spontaneously formed between closely packed colloidal particles in
phase separating liquids. The simulations reveal a self-stabilization mechanism
that operates through diffusive equilibrium of two-phase liquid morphologies.
Such mechanism renders desired microstructural stability and uniformity to the
capillary bridges that are spontaneously formed during liquid solution phase
separation. This self-stabilization behavior is in contrast to conventional
coarsening processes during phase separation. The volume fraction limit of the
separated liquid phases as well as the adhesion strength and thermodynamic
stability of the capillary bridges are discussed. Capillary bridge formations
in various compact colloid assemblies are considered. The study sheds light on
a promising route to in-situ (in-liquid) firming of fragile colloidal crystals
and other compact colloidal microstructures via capillary bridges
Existence of multiple solutions for a p(x)- biharmonic equation
The aim of this paper is to obtain at least three solutions for a Neumann problem involving the p(x)-biharmonic operator. The main tool used for obtaining our result is a three critical points theorem established by Ricceri
Acceleration of Histogram-Based Contrast Enhancement via Selective Downsampling
In this paper, we propose a general framework to accelerate the universal
histogram-based image contrast enhancement (CE) algorithms. Both spatial and
gray-level selective down- sampling of digital images are adopted to decrease
computational cost, while the visual quality of enhanced images is still
preserved and without apparent degradation. Mapping function calibration is
novelly proposed to reconstruct the pixel mapping on the gray levels missed by
downsampling. As two case studies, accelerations of histogram equalization (HE)
and the state-of-the-art global CE algorithm, i.e., spatial mutual information
and PageRank (SMIRANK), are presented detailedly. Both quantitative and
qualitative assessment results have verified the effectiveness of our proposed
CE acceleration framework. In typical tests, computational efficiencies of HE
and SMIRANK have been speeded up by about 3.9 and 13.5 times, respectively.Comment: accepted by IET Image Processin
- …