1,763 research outputs found

    Spin-orbit torques acting upon a perpendicularly-magnetized Py layer

    Full text link
    We show that Py, a commonly-used soft ferromagnetic material with weak anisotropy, can become perpendicularly-magnetized while depositing on Ta buffer layer with Hf or Zr insertion layers (ILs) and MgO capping layer. By using two different approaches, namely harmonic voltage measurement and hysteresis loop shift measurement, the dampinglike spin-orbit torque (DL-SOT) efficiencies from Ta/IL/Py/IL/MgO magnetic heterostructures with perpendicular magnetic anisotropy are characterized. We find that though Ta has a significant spin Hall effect, the DL-SOT efficiencies are small in systems with the Ta/Py interface compared to that obtained from the control sample with the traditional Ta/CoFeB interface. Our results indicate that the spin transparency for the Ta/Py interface is much less than that for the Ta/CoFeB interface, which might be related to the variation of spin mixing conductance for different interfaces

    A Comparative Study on Spin-Orbit Torque Efficiencies from W/ferromagnetic and W/ferrimagnetic Heterostructures

    Full text link
    It has been shown that W in its resistive form possesses the largest spin-Hall ratio among all heavy transition metals, which makes it a good candidate for generating efficient dampinglike spin-orbit torque (DL-SOT) acting upon adjacent ferromagnetic or ferrimagnetic (FM) layer. Here we provide a systematic study on the spin transport properties of W/FM magnetic heterostructures with the FM layer being ferromagnetic Co20_{20}Fe60_{60}B20_{20} or ferrimagnetic Co63_{63}Tb37_{37} with perpendicular magnetic anisotropy. The DL-SOT efficiency ∣ξDL∣|\xi_{DL}|, which is characterized by a current-induced hysteresis loop shift method, is found to be correlated to the microstructure of W buffer layer in both W/Co20_{20}Fe60_{60}B20_{20} and W/Co63_{63}Tb37_{37} systems. Maximum values of ∣ξDL∣≈0.144|\xi_{DL}|\approx 0.144 and ∣ξDL∣≈0.116|\xi_{DL}|\approx 0.116 are achieved when the W layer is partially amorphous in the W/Co20_{20}Fe60_{60}B20_{20} and W/Co63_{63}Tb37_{37} heterostructures, respectively. Our results suggest that the spin Hall effect from resistive phase of W can be utilized to effectively control both ferromagnetic and ferrimagnetic layers through a DL-SOT mechanism

    Reactive Power Dispatch Method in Wind Farms to Improve the Lifetime of Power Converter Considering Wake Effect

    Get PDF

    Maximum Energy Yield Oriented Turbine Control in PMSG based Wind Farm

    Get PDF

    Life Cycle Integration of Building Information Modeling in Infrastructure Projects

    Get PDF
    Building Information Modeling (BIM) can provide solutions to many challenges of asset management, such as missing data, incompatible software, and an unclear business process. However, current implementation of BIM in infrastructure projects has only considers limited factors, such as technology application and digital information delivery, while issues of system compatibility and information needs are still missing. Different aspects of a business are interdependent and an incompatible development of various factors might result in different levels of BIM implementation or even project failure. Comprehensive research is needed to explore the key factors and challenges of BIM implementation in infrastructure projects. This study conducted interviews and surveys with key stakeholders of infrastructure projects to explore the challenges and potential solutions of BIM implementation. Interviews were conducted with 37 professionals and surveys were conducted with 102 professional stakeholders, including owners, designers, contractors, and software vendors. Four main factors, challenges, and potential solutions were identified from content analysis of the interviews and further validated by the surveys. These factors include process factor (when), technology factor (how), people factor (who), and information factor (what). Corresponding solutions are proposed to refine the current workflow and practices

    Life Cycle Integration of Building Information Modeling in Infrastructure Projects

    Get PDF
    Building Information Modeling (BIM) can provide solutions to many challenges of asset management, such as missing data, incompatible software, and an unclear business process. However, current implementation of BIM in infrastructure projects has only considers limited factors, such as technology application and digital information delivery, while issues of system compatibility and information needs are still missing. Different aspects of a business are interdependent and an incompatible development of various factors might result in different levels of BIM implementation or even project failure. Comprehensive research is needed to explore the key factors and challenges of BIM implementation in infrastructure projects. This study conducted interviews and surveys with key stakeholders of infrastructure projects to explore the challenges and potential solutions of BIM implementation. Interviews were conducted with 37 professionals and surveys were conducted with 102 professional stakeholders, including owners, designers, contractors, and software vendors. Four main factors, challenges, and potential solutions were identified from content analysis of the interviews and further validated by the surveys. These factors include process factor (when), technology factor (how), people factor (who), and information factor (what). Corresponding solutions are proposed to refine the current workflow and practices
    • …
    corecore