8 research outputs found

    Research on Polarization and Phase Fading Compensation in Michelson Interferometer Based on 3 Ă— 3 Coupler and Novel Probe with Built-in Faraday Rotator

    No full text
    A self-designed probe and a feedback control scheme based on the Michelson interferometer with a 3 × 3 fiber coupler are proposed. A 45° Faraday rotator is built into the self-designed probe, and a feedback control scheme is used to judge the direction of increase or decrease for the phase compensation, so as to solve the problems of polarization and phase fading. In addition, a result-normalized method is applied in a micro-vibration measurement experiment. The experimental interferometer system achieves a high frequency of 1 MHz micro-vibration. The normalized results keep stable with a maximum deviation from the mean of 1.9% when the power of light reflected back into the self-designed probe is altered. Applied research is carried out by detecting the displacement due to a photoacoustic wave. Therefore, the experimental interferometer system is available for the practical application of micro-displacement measurements, noncontact high-frequency detection, and point-by-point image scanning in biological tissue

    Temperature Cycle Reliability Analysis of an FBAR Filter-Bonded Ceramic Package

    No full text
    On the background that the operating frequency of electronic devices tends to the radio frequency (RF) segment, a film bulk acoustic resonator (FBAR) filter is widely used in communication and military fields because of its advantages of high upper frequency, ample power capacity, small size, and low cost. However, the complex and harsh working environment puts higher requirements for packaging FBAR filters. Based on the Anand constitutive equation, the stress–strain response of the bonded ceramic package was studied by the finite element method for the FBAR filter-bonded ceramic package, and the thermal fatigue life of the device was predicted. We developed solder models with various spillage morphologies based on the random generation technique to examine the impact of spillage on device temperature reliability. The following are the primary conclusions: (1) Solder undergoes periodic deformation, stress, and strain changes throughout the cycle. (2) The corner of the contact surface between the chip and the solder layer has the largest stress at the end of the cycle, measuring 19.377 MPa. (3) The Engelmaier model predicts that the gadget will have a thermal fatigue life of 1928.67 h. (4) Expanding the layered solder area caused by any solder overflow mode may shorten the device’s thermal fatigue life. The thermal fatigue life of a completely spilled solder is higher than that of a partially spilled solder

    Thermal Conductivity of Silica-aerogel (SA) and Autoclave Aerated Concrete (AAC) Composites

    No full text
    Improving the thermal insulating performance of porous building materials is of great practical significance for building energy conservation. In this work, silica aerogels (SA) with ultralow thermal conductivity were proposed as an appropriate candidate to be integrated with autoclaved aerated concrete (AAC) to produce novel SA-AAC composites with higher thermal insulating performance by physical solution impregnation method. The pore-structures, mechanical and thermal properties of the SA-AAC composites were probed by various experimental tests. According to the microscopy and porosimetry results, SA were observed to adhere to the surface walls of the AAC holes, thus reducing the amount of macro-sized pores. In addition, the improved thermal insulating performance of AAC was successfully achieved with the relative improvement depending on the porosity of the pristine AAC. At the mass fraction of SA of ~7%, the highest relative improvement was found to be ~30% The results of this work exhibited a great potential of this novel SA-AAC composite in engineering applications

    An optimizing nested MIMO array with hole-free difference coarray

    No full text
    According to the newly proposed nested MIMO (Multiple-Input Multiple-Input Multiple Output Multiple Array) array design method, we propose to replace the traditional nested array into an optimizing nested array, ie, to optimizing nested MIMO array design. It not only retains the original advantage of nested MIMO array design closed expression with array element position and degree of freedom(DOF), but also greatly improves the array aperture and DOF. Optimizing nested MIMO array firstly uses the optimizing nested array as the transmitting and receiving arrays, and then make the difference set processing for the coarray of MIMO array (coarray, CA). By properly designing the array spacing of the transmitting and receiving arrays, we can obtain a non-porous difference array. When the total number of array elements is given, by analyzing the characteristics of the array structure, the best array element number of the transmitting and receiving arrays can be obtained. Simulation experiments show that compared with the nested MIMO array design, the proposed method can effectively expand the array aperture, increase the DOF, and increase the DOA estimation accuracy of the MIMO radar without increasing the number of actual array elements

    An optimizing nested MIMO array with hole-free difference coarray

    No full text
    According to the newly proposed nested MIMO (Multiple-Input Multiple-Input Multiple Output Multiple Array) array design method, we propose to replace the traditional nested array into an optimizing nested array, ie, to optimizing nested MIMO array design. It not only retains the original advantage of nested MIMO array design closed expression with array element position and degree of freedom(DOF), but also greatly improves the array aperture and DOF. Optimizing nested MIMO array firstly uses the optimizing nested array as the transmitting and receiving arrays, and then make the difference set processing for the coarray of MIMO array (coarray, CA). By properly designing the array spacing of the transmitting and receiving arrays, we can obtain a non-porous difference array. When the total number of array elements is given, by analyzing the characteristics of the array structure, the best array element number of the transmitting and receiving arrays can be obtained. Simulation experiments show that compared with the nested MIMO array design, the proposed method can effectively expand the array aperture, increase the DOF, and increase the DOA estimation accuracy of the MIMO radar without increasing the number of actual array elements

    Remote Sensing Pansharpening by Full-Depth Feature Fusion

    No full text
    Pansharpening is an important yet challenging remote sensing image processing task, which aims to reconstruct a high-resolution (HR) multispectral (MS) image by fusing a HR panchromatic (PAN) image and a low-resolution (LR) MS image. Though deep learning (DL)-based pansharpening methods have achieved encouraging performance, they are infeasible to fully utilize the deep semantic features and shallow contextual features in the process of feature fusion for a HR-PAN image and LR-MS image. In this paper, we propose an efficient full-depth feature fusion network (FDFNet) for remote sensing pansharpening. Specifically, we design three distinctive branches called PAN-branch, MS-branch, and fusion-branch, respectively. The features extracted from the PAN and MS branches will be progressively injected into the fusion branch at every different depth to make the information fusion more broad and comprehensive. With this structure, the low-level contextual features and high-level semantic features can be characterized and integrated adequately. Extensive experiments on reduced- and full-resolution datasets acquired from WorldView-3, QuickBird, and GaoFen-2 sensors demonstrate that the proposed FDFNet only with less than 100,000 parameters performs better than other detail injection-based proposals and several state-of-the-art approaches, both visually and quantitatively
    corecore