220 research outputs found

    Structures and Superconductivity of Hydrogen and Hydrides under Extreme Pressure

    Full text link
    Metallic hydrogen, existing in remarkably extreme environments, was predicted to exhibit long-sought room-temperature superconductivity. Although the superconductivity of metallic hydrogen has not been confirmed experimentally, superconductivity of hydrogen in hydrides was recently discovered with remarkably high critical temperature as theoretically predicted. In recent years, theoretical simulations have become a new paradigm for material science, especially exploration of material at extreme pressure. As the typical high-pressure material, metallic hydrogen has been providing a fertile playground for advanced simulations for long time. Simulations not only provide the substitute of experiments for hydrogen at high-pressure, but also encouraged the discovery of almost all the experimentally discovered superconducting hydrides with the record high superconducting transition temperature. This work reviews recent progress in hydrogen and hydrides under extreme pressure, focusing on phase diagram, structures and the long-sought goal of high-temperature superconductivity. In the end, we highlight structural features of hydrides for realization of hydrogen-driven superconducting hydrides near ambient pressure.Comment: 35 pages, 9 figure

    Ultrasonic welding of lap joints of PEI plates with PEI/CF-fabric prepregs

    Get PDF
    In this study, ultrasonic welding (USW) of lap joints of polyetherimide (PEI) plates (adherends) with carbon fiber (CF) prepregs impregnated with PEI was investigated. No energy director (ED) was used, so binder contents were varied in the prepregs to compensate for the lack of the polymer in the fusion zone. In addition, the effect of the USW parameters on the structure and the mechanical properties of the lap-joints were analyzed. The most homogeneous macrostructure, the maintained structural integrity of both the CF-fabric in the prepregs and the lap-joined PEI adherends, as well as the maximum strength properties (tensile strength) were revealed for the USW joints with the minimum polymer content in the prepreg. In this case, rising the USW time from 400 up to 800 ms radically changed the macrostructure of the fusion zone, while the strength properties did not vary significantly (shear stresses were 42–48 MPa). Computer simulation of the influence of the PEI/CF-fabric ratios in the prepregs on the deformation response of the USW joints showed that the prepreg thicknesses and, accordingly, the PEI/CF ratios did not exert a noticeable effect on the strain–stress (tensile) diagrams, while the determining factor was the adhesion level
    corecore