36 research outputs found

    Organic NIR-II dyes with ultralong circulation persistence for image-guided delivery and therapy

    Get PDF
    Acknowledgments This work was partially supported by grants from the National Key R&D Program of China (2020YFA0908800), NSFC (82111530209, 81773674, 91959103, 81573383, 21763002), Shenzhen Science and Technology Research Grant (JCYJ20190808152019182), the Applied Basic Research Program of Wuhan Municipal Bureau of Science and Technology (2019020701011429), Hubei Province Scientific and Technical Innovation Key Project (2020BAB058), the Local Development Funds of Science and Technology Department of Tibet (XZ202102YD0033C, XZ202001YD0028C), and the Fundamental Research Funds for the Central Universities.Peer reviewedPublisher PD

    HDGF promotes gefitinib resistance by activating the PI3K/AKT and MEK/ERK signaling pathways in non-small cell lung cancer

    No full text
    Abstract Hepatoma-derived growth factor (HDGF) expression is associated with poor prognosis in non-small cell lung cancer (NSCLC); however, whether HDGF affects gefitinib resistance in NSCLC remains unknown. This study aimed to explore the role of HDGF in gefitinib resistance in NSCLC and to discover the underlying mechanisms. Stable HDGF knockout or overexpression cell lines were generated to perform experiments in vitro and in vivo. HDGF concentrations were determined using an ELISA kit. HDGF overexpression exacerbated the malignant phenotype of NSCLC cells, while HDGF knockdown exerted the opposite effects. Furthermore, PC-9 cells, which were initially gefitinib-sensitive, became resistant to gefitinib treatment after HDGF overexpression, whereas HDGF knockdown enhanced gefitinib sensitivity in H1975 cells, which were initially gefitinib-resistant. Higher levels of HDGF in plasma or tumor tissue also indicated gefitinib resistance. The effects of HDGF on promoting the gefitinib resistance were largely attenuated by MK2206 (Akt inhibitor) or U0126 (ERK inhibitor). Mechanistically, gefitinib treatment provoked HDGF expression and activated the Akt and ERK pathways, which were independent of EGFR phosphorylation. In summary, HDGF contributes to gefitinib resistance by activating the Akt and ERK signaling pathways. The higher HDGF levels may predict poor efficacy for TKI treatment, thus it has the potential to serve as a new target for overcoming tyrosine kinase inhibitor resistance in combating NSCLC
    corecore