156 research outputs found
Microwave Photonic Sensing Based on Optical Microresonators
Optical microresonators (OMRs) have been widely applied in various sensing applications. However, the sensing performances of conventional OMR-based sensors are subject to resonance parameters and fabrication accuracy and are further restricted by the interrogation scheme used. Recently, microwave photonic (MWP) techniques have been used to realize high-speed and high-resolution OMR-based sensors. So far, those MWP schemes are either still fabrication dependent or only applicable to specific uses, and rare attention has been paid to achieving multi-parameter sensing that is indispensable in real-life applications.
The thesis proposes novel OMR-based MWP sensing schemes with improved sensing performances. Based on the MWP sideband processing technique, a new MWP interrogation scheme, which features a high resolution regardless of the OMR parameters and fabrication imperfections, is proposed and demonstrated in the sensing of temperature, humidity, and magnetic field, respectively, with high sensitivity and high resolution, where an automatic correction mechanism is added to compensate for resonance lineshape variation automatically. Next, the high-resolution MWP sensing scheme is extended to cascaded OMRs to enable multi-parameter sensing capability. The simultaneous high-resolution MWP sensing of temperature and humidity with two cascaded OMRs is demonstrated. Lastly, machine learning (ML) and deep learning (DL) techniques are applied to MWP sensing to reduce the complexity further. The temperature-insensitive MWP humidity sensor is first achieved with the support vector regression. Then, a new MWP multi-parameter sensing paradigm with the least requirement on the OMR structure is proposed by incorporating DL to process the raw interrogation results directly. The simultaneous MWP sensing of temperature and humidity with a single optical resonance using the convolutional neural tangent kernel is demonstrated
Pin on Disc Wear volume Prediction Based on Grey System Theory
This paper is a study of pin on disc wear volume, with the MMW-1A vertical friction and wear testing machine as the testing equipment, under different lubrication conditions. In this paper, the pin wear volume GM(1,1) prediction model is built based on the grey system theory, GM(1,1) the model consists of a single variable in the first-order differential equation. The pin wear volume measured compare with GM(1,1) predicted wear volume, The comparison results showed that, the predicted values by the GM(1,1) are very close to the experiment measured values, and the precision of predicted results is quite high
RAEDiff: Denoising Diffusion Probabilistic Models Based Reversible Adversarial Examples Self-Generation and Self-Recovery
Collected and annotated datasets, which are obtained through extensive
efforts, are effective for training Deep Neural Network (DNN) models. However,
these datasets are susceptible to be misused by unauthorized users, resulting
in infringement of Intellectual Property (IP) rights owned by the dataset
creators. Reversible Adversarial Exsamples (RAE) can help to solve the issues
of IP protection for datasets. RAEs are adversarial perturbed images that can
be restored to the original. As a cutting-edge approach, RAE scheme can serve
the purposes of preventing unauthorized users from engaging in malicious model
training, as well as ensuring the legitimate usage of authorized users.
Nevertheless, in the existing work, RAEs still rely on the embedded auxiliary
information for restoration, which may compromise their adversarial abilities.
In this paper, a novel self-generation and self-recovery method, named as
RAEDiff, is introduced for generating RAEs based on a Denoising Diffusion
Probabilistic Models (DDPM). It diffuses datasets into a Biased Gaussian
Distribution (BGD) and utilizes the prior knowledge of the DDPM for generating
and recovering RAEs. The experimental results demonstrate that RAEDiff
effectively self-generates adversarial perturbations for DNN models, including
Artificial Intelligence Generated Content (AIGC) models, while also exhibiting
significant self-recovery capabilities
Dose-related liver injury of Geniposide associated with the alteration in bile acid synthesis and transportation.
Fructus Gardenia (FG), containing the major active constituent Geniposide, is widely used in China for medicinal purposes. Currently, clinical reports of FG toxicity have not been published, however, animal studies have shown FG or Geniposide can cause hepatotoxicity in rats. We investigated Geniposide-induced hepatic injury in male Sprague-Dawley rats after 3-day intragastric administration of 100 mg/kg or 300 mg/kg Geniposide. Changes in hepatic histomorphology, serum liver enzyme, serum and hepatic bile acid profiles, and hepatic bile acid synthesis and transportation gene expression were measured. The 300 mg/kg Geniposide caused liver injury evidenced by pathological changes and increases in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamytransferase (γ-GT). While liver, but not sera, total bile acids (TBAs) were increased 75% by this dose, dominated by increases in taurine-conjugated bile acids (t-CBAs). The 300 mg/kg Geniposide also down-regulated expression of Farnesoid X receptor (FXR), small heterodimer partner (SHP) and bile salt export pump (BSEP). In conclusion, 300 mg/kg Geniposide can induce liver injury with associated changes in bile acid regulating genes, leading to an accumulation of taurine conjugates in the rat liver. Taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA) as well as tauro-α-muricholic acid (T-α-MCA) are potential markers for Geniposide-induced hepatic damage
Characterization of LC-MS based urine metabolomics in healthy children and adults
Previous studies reported that sex and age could influence urine metabolomics, which should be considered in biomarker discovery. As a consequence, for the baseline of urine metabolomics characteristics, it becomes critical to avoid confounding effects in clinical cohort studies. In this study, we provided a comprehensive lifespan characterization of urine metabolomics in a cohort of 348 healthy children and 315 adults, aged 1 to 78 years, using liquid chromatography coupled with high resolution mass spectrometry. Our results suggest that sex-dependent urine metabolites are much greater in adults than in children. The pantothenate and CoA biosynthesis and alanine metabolism pathways were enriched in early life. Androgen and estrogen metabolism showed high activity during adolescence and youth stages. Pyrimidine metabolism was enriched in the geriatric stage. Based on the above analysis, metabolomic characteristics of each age stage were provided. This work could help us understand the baseline of urine metabolism characteristics and contribute to further studies of clinical disease biomarker discovery
Microfluidic Assaying of Circulating Tumor Cells and Its Application in Risk Stratification of Urothelial Bladder Cancer
Bladder cancer is characterized by its frequent recurrence and progression. Effective treatment strategies need to be based on an accurate risk stratification, in which muscle invasiveness and tumor grade represent the two most important factors. Traditional imaging techniques provide preliminary information about muscle invasiveness but are lacking in terms of accuracy. Although as the gold standard, pathological biopsy is only available after the surgery and cannot be performed longitudinally for long-term surveillance. In this work, we developed a microfluidic approach that interrogates circulating tumor cells (CTCs) in the peripheral blood of bladder cancer patients to reflect the risk stratification of the disease. In a cohort of 48 bladder cancer patients comprising 33 non-muscle invasive bladder cancer (NMIBC) cases and 15 muscle invasive bladder cancer (MIBC) cases, the CTC count was found to be considerably higher in the MIBC group compared with the NMIBC group (4.67 vs. 1.88 CTCs/3 mL, P=0.019), and was significantly higher in high-grade bladder cancer patients verses low-grade bladder cancer patients (3.69 vs. 1.18 CTCs/3mL, P=0.024). This microfluidic assay of CTCs is believed to be a promising complementary tool for the risk stratification of bladder cancer
Histopathological Observation of Immunized Rhesus Macaques with Plague Vaccines after Subcutaneous Infection of Yersinia pestis
In our previous study, complete protection was observed in Chinese-origin rhesus macaques immunized with SV1 (20 µg F1 and 10 µg rV270) and SV2 (200 µg F1 and 100 µg rV270) subunit vaccines and with EV76 live attenuated vaccine against subcutaneous challenge with 6×106 CFU of Y. pestis. In the present study, we investigated whether the vaccines can effectively protect immunized animals from any pathologic changes using histological and immunohistochemical techniques. In addition, the glomerular basement membranes (GBMs) of the immunized animals and control animals were checked by electron microscopy. The results show no signs of histopathological lesions in the lungs, livers, kidneys, lymph nodes, spleens and hearts of the immunized animals at Day 14 after the challenge, whereas pathological alterations were seen in the corresponding tissues of the control animals. Giemsa staining, ultrastructural examination, and immunohistochemical staining revealed bacteria in some of the organs of the control animals, whereas no bacterium was observed among the immunized animals. Ultrastructural observation revealed that no glomerular immune deposits on the GBM. These observations suggest that the vaccines can effectively protect animals from any pathologic changes and eliminate Y. pestis from the immunized animals. The control animals died from multi-organ lesions specifically caused by the Y. pestis infection. We also found that subcutaneous infection of animals with Y. pestis results in bubonic plague, followed by pneumonic and septicemic plagues. The histopathologic features of plague in rhesus macaques closely resemble those of rodent and human plagues. Thus, Chinese-origin rhesus macaques serve as useful models in studying Y. pestis pathogenesis, host response and the efficacy of new medical countermeasures against plague
Intercomparison of NO2, O4, O3 and HCHO slant column measurements by MAX-DOAS and zenith-sky UVÂżvisible spectrometers during CINDI-2
40 pags., 22 figs., 13 tabs.In September 2016, 36 spectrometers from 24 institutes measured a number of key atmospheric pollutants for a period of 17¿d during the Second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) that took place at Cabauw, the Netherlands (51.97¿¿N, 4.93¿¿E). We report on the outcome of the formal semi-blind intercomparison exercise, which was held under the umbrella of the Network for the Detection of Atmospheric Composition Change (NDACC) and the European Space Agency (ESA). The three major goals of CINDI-2 were (1) to characterise and better understand the differences between a large number of multi-axis differential optical absorption spectroscopy (MAX-DOAS) and zenith-sky DOAS instruments and analysis methods, (2) to define a robust methodology for performance assessment of all participating instruments, and (3) to contribute to a harmonisation of the measurement settings and retrieval methods. This, in turn, creates the capability to produce consistent high-quality ground-based data sets, which are an essential requirement to generate reliable long-term measurement time series suitable for trend analysis and satellite data validation.
The data products investigated during the semi-blind intercomparison are slant columns of nitrogen dioxide (NO2), the oxygen collision complex (O4) and ozone (O3) measured in the UV and visible wavelength region, formaldehyde (HCHO) in the UV spectral region, and NO2 in an additional (smaller) wavelength range in the visible region. The campaign design and implementation processes are discussed in detail including the measurement protocol, calibration procedures and slant column retrieval settings. Strong emphasis was put on the careful alignment and synchronisation of the measurement systems, resulting in a unique set of measurements made under highly comparable air mass conditions.
The CINDI-2 data sets were investigated using a regression analysis of the slant columns measured by each instrument and for each of the target data products. The slope and intercept of the regression analysis respectively quantify the mean systematic bias and offset of the individual data sets against the selected reference (which is obtained from the median of either all data sets or a subset), and the rms error provides an estimate of the measurement noise or dispersion. These three criteria are examined and for each of the parameters and each of the data products, performance thresholds are set and applied to all the measurements. The approach presented here has been developed based on heritage from previous intercomparison exercises. It introduces a quantitative assessment of the consistency between all the participating instruments for the MAX-DOAS and zenith-sky DOAS techniques.CINDI-2 received funding from the Netherlands Space Office (NSO). Funding for this study was provided
by ESA through the CINDI-2 (ESA contract no. 4000118533/16/ISbo) and FRM4DOAS (ESA contract no. 4000118181/16/I-EF)
projects and partly within the EU 7th Framework Programme
QA4ECV project (grant agreement no. 607405). The BOKU
MAX-DOAS instrument was funded and the participation of Stefan F. Schreier was supported by the Austrian Science Fund
(FWF): I 2296-N29. The participation of the University of Toronto
team was supported by the Canadian Space Agency (through
the AVATARS project) and the Natural Sciences and Engineering Research Council (through the PAHA project). The instrument was primarily funded by the Canada Foundation for Innovation and is usually operated at the Polar Environment Atmospheric Research Laboratory (PEARL) by the Canadian Network
for the Detection of Atmospheric Change (CANDAC). Funding for
CISC was provided by the UVAS (“Ultraviolet and Visible Atmospheric Sounder”) projects SEOSAT/INGENIO, ESP2015-71299-
R, MINECO-FEDER and UE. The activities of the IUP-Heidelberg
were supported by the DFG project RAPSODI (grant no. PL
193/17-1). SAOZ and Mini-SAOZ instruments are supported by the
Centre National de la Recherche Scientifique (CNRS) and the Centre National d’Etudes Spatiales (CNES). INTA recognises support
from the National funding projects HELADO (CTM2013-41311-P) and AVATAR (CGL2014-55230-R). AMOIAP recognises support from the Russian Science Foundation (grant no. 16-17-10275) and the Russian Foundation for Basic Research (grant nos. 16-05-
01062 and 18-35-00682). Ka L. Chan received transnational access funding from ACTRIS-2 (H2020 grant agreement no. 654109).
Rainer Volkamer recognises funding from NASA’s Atmospheric Composition Program (NASA-16-NUP2016-0001) and the US National Science Foundation (award AGS-1620530). Henning Finkenzeller is the recipient of a NASA graduate fellowship. Mihalis Vrekoussis recognises support from the University of Bremen and the DFG Research Center/Cluster of Excellence “The Ocean in the
Earth System-MARUM”. Financial support through the University of Bremen Institutional Strategy in the framework of the
DFG Excellence Initiative is gratefully appreciated for Anja Schönhardt. Pandora instrument deployment was supported by Luftblick
through the ESA Pandonia Project and NASA Pandora Project at the Goddard Space Flight Center under NASA Headquarters’ Tropospheric Composition Program. The article processing charges for
this open-access publication were covered by BK Scientific
- …