249 research outputs found

    Topologically protected entanglement switching around exceptional points

    Full text link
    The robust operation of quantum entanglement states are crucial for applications in quantum information, computing, and communications1-3. However, it has always been a great challenge to complete such a task because of decoherence and disorder. Here, we propose theoretically and demonstrate experimentally an effective scheme to realize robust operation of quantum entanglement states by designing quadruple degeneracy exceptional points. By encircling the exceptional points on two overlapping Riemann energy surfaces, we have realized a chiral switch for entangled states with high fidelity. Owing to the topological protection conferred by the Riemann surface structure, this switching of chirality exhibits strong robustness against perturbations in the encircling path. Furthermore, we have experimentally validated such a scheme on a quantum walk platform. Our work opens up a new way for the application of non-Hermitian physics in the field of quantum information

    Experimental topological quantum computing with electric circuits

    Full text link
    The key obstacle to the realization of a scalable quantum computer is overcoming environmental and control errors. Topological quantum computation has attracted great attention because it has emerged as one of the most promising approaches to solving these problems. Various theoretical schemes for building topological quantum computation have been proposed. However, experimental implementation has always been a great challenge because it has proved to be extremely difficult to create and manipulate topological qubits in real systems. Therefore, topological quantum computation has not been realized in experiments yet. Here, we report the first experimental realization of topological quantum computation with electric circuits. Based on our proposed new scheme with circuits, Majorana-like edge states are not only observed experimentally, but also T junctions are constructed for the braiding process. Furthermore, we demonstrate the feasibility of topological quantum computing through a set of one- and two-qubit unitary operations. Finally, our implementation of Grover's search algorithm demonstrates that topological quantum computation is ideally suited for such tasks

    Exploring topological phase transition andWeyl physics in five dimensions with electric circuits

    Full text link
    Weyl semimetals are phases of matter with gapless electronic excitations that are protected by topology and symmetry. Their properties depend on the dimensions of the systems. It has been theoretically demonstrated that five-dimensional (5D) Weyl semimetals emerge as novel phases during the topological phase transition in analogy to the three-dimensional case. However, experimental observation of such a phenomenon remains a great challenge because the tunable 5D system is extremely hard to construct in real space. Here, we construct 5D electric circuit platforms in fully real space and experimentally observe topological phase transitions in five dimensions. Not only are Yang monopoles and linked Weyl surfaces observed experimentally, but various phase transitions in five dimensions are also proved, such as the phase transitions from a normal insulator to a Hopf link of twoWeyl surfaces and then to a 5D topological insulator. The demonstrated topological phase transitions in five dimensions leverage the concept of higher-dimensional Weyl physics to control electrical signals in the engineered circuits

    Flow around an oscillating circular disk at low to moderate Reynolds numbers

    Get PDF
    Direct numerical simulations of the flow induced by a circular disk oscillating sinusoidally along its axis are performed. The aspect ratio of the disk is 10. The Reynolds number , based on the maximum speed and the diameter of the disk, is in the range of . The Keulegan-Carpenter number is in the range of . Five flow regimes are observed in the considered-space: (I) axisymmetric flow (AS), (II) planar symmetric flow in the low-region (PSL), (III) azimuthally rotating flow in the low-region (ARL), (IV) planar symmetric flow in the high-region (PSH) and (V) azimuthally rotating flow in the high-region (ARH). The critical boundaries between different flow regimes are identified based on the evolutions of the magnitude and direction of transverse force acting on the disk. For the non-axisymmetric flow regimes, the flow is one-sided with respect to the axis of the disk and is associated with a non-zero mean value of the transverse force acting on the disk

    The Outbreak Evaluation of COVID-19 in Wuhan District of China

    Full text link
    There were 27 novel coronavirus pneumonia cases found in Wuhan, China in December 2019, named as 2019-nCoV temporarily and COVID-19 formally by WHO on 11 February, 2020. In December 2019 and January 2020, COVID-19 has spread in large scale among the population, which brought terrible disaster to the life and property of the Chinese people. In this paper, we will first analyze the feature and pattern of the virus transmission, and discuss the key impact factors and uncontrollable factors of epidemic transmission based on public data. Then the virus transmission can be modelled and used for the inflexion and extinction period of epidemic development so as to provide theoretical support for the Chinese government in the decision-making of epidemic prevention and recovery of economic production. Further, this paper demonstrates the effectiveness of the prevention methods taken by the Chinese government such as multi-level administrative region isolation. It is of great importance and practical significance for the world to deal with public health emergencies.Comment: 7 pages, 18 figure
    • …
    corecore