52 research outputs found

    Dynamical trust and reputation computation model for B2C E-Commerce

    Get PDF
    Trust is one of the most important factors that influence the successful application of network service environments, such as e-commerce, wireless sensor networks, and online social networks. Computation models associated with trust and reputation have been paid special attention in both computer societies and service science in recent years. In this paper, a dynamical computation model of reputation for B2C e-commerce is proposed. Firstly, conceptions associated with trust and reputation are introduced, and the mathematical formula of trust for B2C e-commerce is given. Then a dynamical computation model of reputation is further proposed based on the conception of trust and the relationship between trust and reputation. In the proposed model, classical varying processes of reputation of B2C e-commerce are discussed. Furthermore, the iterative trust and reputation computation models are formulated via a set of difference equations based on the closed-loop feedback mechanism. Finally, a group of numerical simulation experiments are performed to illustrate the proposed model of trust and reputation. Experimental results show that the proposed model is effective in simulating the dynamical processes of trust and reputation for B2C e-commerce

    Streptococcus suis Sequence Type 7 Outbreak, Sichuan, China

    Get PDF
    An outbreak of Streptococcus suis serotype 2 emerged in the summer of 2005 in Sichuan Province, and sporadic infections occurred in 4 additional provinces of China. In total, 99 S. suis strains were isolated and analyzed in this study: 88 isolates from human patients and 11 from diseased pigs. We defined 98 of 99 isolates as pulse type I by using pulsed-field gel electrophoresis analysis of SmaI-digested chromosomal DNA. Furthermore, multilocus sequence typing classified 97 of 98 members of the pulse type I in the same sequence type (ST), ST-7. Isolates of ST-7 were more toxic to peripheral blood mononuclear cells than ST-1 strains. S. suis ST-7, the causative agent, was a single-locus variant of ST-1 with increased virulence. These findings strongly suggest that ST-7 is an emerging, highly virulent S. suis clone that caused the largest S. suis outbreak ever described

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Technology for Position Correction of Satellite Precipitation and Contributions to Error Reduction—A Case of the ‘720’ Rainstorm in Henan, China

    No full text
    In July 2021, an extreme precipitation event occurred in Henan, China, causing tremendous damage and deaths; so, it is very important to study the observation technology of extreme precipitation. Surface rain gauge precipitation observations have high accuracy but low resolution and coverage. Satellite remote sensing has high spatial resolution and wide coverage, but has large precipitation accuracy and distribution errors. Therefore, how to merge the above two kinds of precipitation observations effectively to obtain heavy precipitation products with more accurate geographic distributions has become an important but difficult scientific problem. In this paper, a new information fusion method for improving the position accuracy of satellite precipitation estimations is used based on the idea of registration and warping in image processing. The key point is constructing a loss function that includes a term for measuring two information field differences and a term for a warping field constraint. By minimizing the loss function, the purpose of position error correction of quantitative precipitation estimation from FY-4A and Integrated Multisatellite Retrievals of GPM are achieved, respectively, using observations from surface rain gauge stations. The errors of different satellite precipitation products relative to ground stations are compared and analyzed before and after position correction, using the ‘720’ extreme precipitation in Henan, China, as an example. The experimental results show that the final run has the best performance and FY-4A has the worse performance. After position corrections, the precipitation products of the three satellites are improved, among which FY-4A has the largest improvement, IMERG final run has the smallest improvement, and IMERG late run has the best performance and the smallest error. Their mean absolute errors are reduced by 23%, 14%, and 16%, respectively, and their correlation coefficients with rain gauge stations are improved by 63%, 9%, and 16%, respectively. The error decomposition model is used to examine the contributions of each error component to the total error. The results show that the new method improves the precipitation products of GPM primarily in terms of hit bias. However, it does not significantly reduce the hit bias of precipitation products of FY-4A while it reduces the total error by reducing the number of false alarms

    Study on Spatial Distribution Characteristics of Industrial Pollution Sources in 2008

    No full text
    With the continuous development of China’s economy, the problems of pollutant emissions and environmental governance are gradually emerging. Based on the monthly data of man-made emission sources in Asia from the 2008 East Asia MIX emission inventory, this study analyzed the temporal and spatial distribution characteristics of air pollutants including PM2.5, PM10, CO, CO2, NOx, OC, etc., and explored the difference and variation law of material concentration distribution between designated special regions, as well as the possible impact of various atmospheric systems on them. Firstly, in most areas of China, the distribution of pollutants has obvious temporal and spatial differences, and the overall trend of pollutant concentration is higher in the north than in the south. The results show that the monthly variation trend of pollutants in India is significantly correlated with that in China. However, compared with the monthly trend in northern China, it is not particularly obvious

    Polar Vortex Multi-Day Intensity Prediction Relying on New Deep Learning Model: A Combined Convolution Neural Network with Long Short-Term Memory Based on Gaussian Smoothing Method

    No full text
    The variation of polar vortex intensity is a significant factor affecting the atmospheric conditions and weather in the Northern Hemisphere (NH) and even the world. However, previous studies on the prediction of polar vortex intensity are insufficient. This paper establishes a deep learning (DL) model for multi-day and long-time intensity prediction of the polar vortex. Focusing on the winter period with the strongest polar vortex intensity, geopotential height (GPH) data of NCEP from 1948 to 2020 at 50 hPa are used to construct the dataset of polar vortex anomaly distribution images and polar vortex intensity time series. Then, we propose a new convolution neural network with long short-term memory based on Gaussian smoothing (GSCNN-LSTM) model which can not only accurately predict the variation characteristics of polar vortex intensity from day to day, but also can produce a skillful forecast for lead times of up to 20 days. Moreover, the innovative GSCNN-LSTM model has better stability and skillful correlation prediction than the traditional and some advanced spatiotemporal sequence prediction models. The accuracy of the model suggests important implications that DL methods have good applicability in forecasting the nonlinear system and vortex spatial–temporal characteristics variation in the atmosphere

    Effects of Natural and Synthetic Astaxanthin on Growth, Body Color, and Transcriptome and Metabolome Profiles in the Leopard Coralgrouper (<i>Plectropomus leopardus</i>)

    No full text
    Natural and synthetic astaxanthin can promote pigmentation in fish. In this study, the effects of dietary astaxanthin on growth and pigmentation were evaluated in leopard coralgrouper (Plectropomus leopardus). Fish were assigned to three groups: 0% astaxanthin (C), 0.02% natural astaxanthin (HP), and 0.02% synthetic astaxanthin (AS). Brightness (L*) was not influenced by astaxanthin. However, redness (a*) and yellowness (b*) were significantly higher for fish fed astaxanthin-containing diets than fish fed control diets and were significantly higher in the HP group than in the AS group. In a transcriptome analysis, 466, 33, and 32 differentially expressed genes (DEGs) were identified between C and HP, C and AS, and AS and HP, including various pigmentation-related genes. DEGs were enriched for carotenoid deposition and other pathways related to skin color. A metabolome analysis revealed 377, 249, and 179 differential metabolites (DMs) between C and HP, C and AS, and AS and HP, respectively. In conclusion, natural astaxanthin has a better coloration effect on P. leopardus, which is more suitable as a red colorant in aquaculture. These results improve our understanding of the effects of natural and synthetic astaxanthin on red color formation in fish
    • …
    corecore