87 research outputs found

    Homotaurine, a safe blood-brain barrier permeable GABAA-R-specific agonist, ameliorates disease in mouse models of multiple sclerosis.

    Get PDF
    There is a need for treatments that can safely promote regulatory lymphocyte responses. T cells express GABA receptors (GABAA-Rs) and GABA administration can inhibit Th1-mediated processes such as type 1 diabetes and rheumatoid arthritis in mouse models. Whether GABAA-R agonists can also inhibit Th17-driven processes such as experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), is an open question. GABA does not pass through the blood-brain barrier (BBB) making it ill-suited to inhibit the spreading of autoreactivity within the CNS. Homotaurine is a BBB-permeable amino acid that antagonizes amyloid fibril formation and was found to be safe but ineffective in long-term Alzheimer's disease clinical trials. Homotaurine also acts as GABAA-R agonist with better pharmacokinetics than that of GABA. Working with both monophasic and relapsing-remitting mouse models of EAE, we show that oral administration of homotaurine can (1) enhanceΒ CD8+CD122+PD-1+ and CD4+Foxp3+ Treg, but not Breg, responses, (2) inhibit autoreactive Th17 and Th1 responses, and (3) effectively ameliorate ongoing disease. These observations demonstrate the potential of BBB-permeable GABAA-R agonists as a new class of treatment to enhance CD8+ and CD4+ Treg responses and limit Th17 and Th1-medaited inflammation in the CNS

    Combined therapy with GABA and proinsulin/alum acts synergistically to restore long-term normoglycemia by modulating T-cell autoimmunity and promoting Ξ²-cell replication in newly diabetic NOD mice.

    Get PDF
    Antigen-based therapies (ABTs) fail to restore normoglycemia in newly diabetic NOD mice, perhaps because too few Ξ²-cells remain by the time that ABT-induced regulatory responses arise and spread. We hypothesized that combining a fast-acting anti-inflammatory agent with an ABT could limit pathogenic responses while ABT-induced regulatory responses arose and spread. Ξ³-Aminobutyric acid (GABA) administration can inhibit inflammation, enhance regulatory T-cell (Treg) responses, and promote Ξ²-cell replication in mice. We examined the effect of combining a prototypic ABT, proinsulin/alum, with GABA treatment in newly diabetic NOD mice. Proinsulin/alum monotherapy failed to correct hyperglycemia, while GABA monotherapy restored normoglycemia for a short period. Combined treatment restored normoglycemia in the long term with apparent permanent remission in some mice. Proinsulin/alum monotherapy induced interleukin (IL)-4- and IL-10-secreting T-cell responses that spread to other Ξ²-cell autoantigens. GABA monotherapy induced moderate IL-10 (but not IL-4) responses to Ξ²-cell autoantigens. Combined treatment synergistically reduced spontaneous type 1 T-helper cell responses to autoantigens, ABT-induced IL-4 and humoral responses, and insulitis, but enhanced IL-10 and Treg responses and promoted Ξ²-cell replication in the islets. Thus, combining ABT with GABA can inhibit pathogenic T-cell responses, induce Treg responses, promote Ξ²-cell replication, and effectively restore normoglycemia in newly diabetic NOD mice. Since these treatments appear safe for humans, they hold promise for type 1 diabetes intervention

    Determinant Spreading of  T Helper Cell 2 (Th2) Responses to Pancreatic Islet Autoantigens

    Get PDF
    The nature (Th1 versus Th2) and dynamics of the autoimmune response during the development of insulin-dependent diabetes mellitus (IDDM) and after immunotherapy are unclear. Here, we show in nonobese diabetic (NOD) mice that the autoreactive T cell response starts and spreads as a pure Th1 type autoimmunity, suggesting that a spontaneous Th1 cascade underlies disease progression. Surprisingly, induction of antiinflammatory Th2 responses to a single Ξ² cell antigen (Ξ²CA) resulted in the spreading of Th2 cellular and humoral immunity to unrelated Ξ²CAs in an infectious manner and protection from IDDM. The data suggest that both Th1 and Th2 autoimmunity evolve in amplificatory cascades by generating site-specific, but not antigen-specific, positive feedback circuits. Determinant spreading of Th2 responses may be a fundamental mechanism underlying antigen-based immunotherapeutics, explaining observations of infectious tolerance and providing a new theoretical framework for therapeutic intervention

    Increased risk for T cell autoreactivity to ß-cell antigens in the mice expressing the Avy obesity-associated gene.

    Get PDF
    There has been considerable debate as to whether obesity can act as an accelerator of type 1 diabetes (T1D). We assessed this possibility using transgenic mice (MIP-TF mice) whose ß-cells express enhanced green fluorescent protein (EGFP). Infecting these mice with EGFP-expressing murine herpes virus-68 (MHV68-EGFP) caused occasional transient elevation in their blood glucose, peri-insulitis, and Th1 responses to EGFP which did not spread to other ß-cell antigens. We hypothesized that obesity-related systemic inflammation and ß-cell stress could exacerbate the MHV68-EGFP-induced ß-cell autoreactivity. We crossed MIP-TF mice with Avy mice which develop obesity and provide models of metabolic disease alongside early stage T2D. Unlike their MIP-TF littermates, MHV68-EGFP-infected Avy/MIP-TF mice developed moderate intra-insulitis and transient hyperglycemia. MHV68-EGFP infection induced a more pronounced intra-insulitis in older, more obese, Avy/MIP-TF mice. Moreover, in MHV68-EGFP-infected Avy/MIP-TF mice, Th1 reactivity spread from EGFP to other ß-cell antigens. Thus, the spreading of autoreactivity among ß-cell antigens corresponded with the transition from peri-insulitis to intra-insulitis and occurred in obese Avy/MIP-TF mice but not lean MIP-TF mice. These observations are consistent with the notion that obesity-associated systemic inflammation and ß-cell stress lowers the threshold necessary for T cell autoreactivity to spread from EGFP to other ß-cell autoantigens

    Combining Antigen-Based Therapy with GABA Treatment Synergistically Prolongs Survival of Transplanted ß-Cells in Diabetic NOD Mice

    Get PDF
    Antigen-based therapies (ABTs) very effectively prevent the development of type 1 diabetes (T1D) when given to young nonobese diabetic (NOD) mice, however, they have little or no ability to reverse hyperglycemia in newly diabetic NOD mice. More importantly, ABTs have not yet demonstrated an ability to effectively preserve residual ß-cells in individuals newly diagnosed with type 1 diabetes (T1D). Accordingly, there is great interest in identifying new treatments that can be combined with ABTs to safely protect ß-cells in diabetic animals. The activation of γ-aminobutyric acid (GABA) receptors (GABA-Rs) on immune cells has been shown to prevent T1D, experimental autoimmune encephalomyelitis (EAE) and rheumatoid arthritis in mouse models. Based on GABA's ability to inhibit different autoimmune diseases and its safety profile, we tested whether the combination of ABT with GABA treatment could prolong the survival of transplanted ß-cells in newly diabetic NOD mice. Newly diabetic NOD mice were untreated, or given GAD/alum (20 or 100 ¡g) and placed on plain drinking water, or water containing GABA (2 or 6 mg/ml). Twenty-eight days later, they received syngenic pancreas grafts and were monitored for the recurrence of hyperglycemia. Hyperglycemia reoccurred in the recipients given plain water, GAD monotherapy, GABA monotherapy, GAD (20 ¡g)+GABA (2 mg/ml), GAD (20 ¡g)+GABA (6 mg/ml) and GAD (100 ¡g)+GABA (6 mg/ml) about 1, 2-3, 3, 2-3, 3-8 and 10-11 weeks post-transplantation, respectively. Thus, combined GABA and ABT treatment had a synergistic effect in a dose-dependent fashion. These findings suggest that co-treatment with GABA (or other GABA-R agonists) may provide a new strategy to safely enhance the efficacy of other therapeutics designed to prevent or reverse T1D, as well as other T cell-mediated autoimmune diseases

    Oral Treatment with Ξ³-Aminobutyric Acid Improves Glucose Tolerance and Insulin Sensitivity by Inhibiting Inflammation in High Fat Diet-Fed Mice

    Get PDF
    Adipocyte and Ξ²-cell dysfunction and macrophage-related chronic inflammation are critical for the development of obesity-related insulin resistance and type 2 diabetes mellitus (T2DM), which can be negatively regulated by Tregs. Our previous studies and those of others have shown that activation of Ξ³-aminobutyric acid (GABA) receptors inhibits inflammation in mice. However, whether GABA could modulate high fat diet (HFD)-induced obesity, glucose intolerance and insulin resistance has not been explored. Here, we show that although oral treatment with GABA does not affect water and food consumption it inhibits the HFD-induced gain in body weights in C57BL/6 mice. Furthermore, oral treatment with GABA significantly reduced the concentrations of fasting blood glucose, and improved glucose tolerance and insulin sensitivity in the HFD-fed mice. More importantly, after the onset of obesity and T2DM, oral treatment with GABA inhibited the continual HFD-induced gain in body weights, reduced the concentrations of fasting blood glucose and improved glucose tolerance and insulin sensitivity in mice. In addition, oral treatment with GABA reduced the epididymal fat mass, adipocyte size, and the frequency of macrophage infiltrates in the adipose tissues of HFD-fed mice. Notably, oral treatment with GABA significantly increased the frequency of CD4+Foxp3+ Tregs in mice. Collectively, our data indicated that activation of peripheral GABA receptors inhibited the HFD-induced glucose intolerance, insulin resistance, and obesity by inhibiting obesity-related inflammation and up-regulating Treg responses in vivo. Given that GABA is safe for human consumption, activators of GABA receptors may be valuable for the prevention of obesity and intervention of T2DM in the clinic

    A Potential Role for Shed Soluble Major Histocompatibility Class I Molecules as Modulators of Neurite Outgrowth

    Get PDF
    The neurobiological activities of classical major histocompatibility class I (MHCI) molecules are just beginning to be explored. To further examine MHCI's actions during the formation of neuronal connections, we cultured embryonic mouse retina explants a short distance from wildtype thalamic explants, or thalami from transgenic mice (termed β€œNSE-Db”) whose neurons express higher levels of MHCI. While retina neurites extended to form connections with wildtype thalami, we were surprised to find that retina neurite outgrowth was very stunted in regions proximal to NSE-Db thalamic explants, suggesting that a diffusible factor from these thalami inhibited retina neurite outgrowth. It has been long known that MHCI-expressing cells release soluble forms of MHCI (sMHCI) due to the shedding of intact MHCI molecules, as well as the alternative exon splicing of its heavy chain or the action proteases which cleave off it's transmembrane anchor. We show that the diffusible inhibitory factor from the NSE-Db thalami is sMHCI. We also show that COS cells programmed to express murine MHCI release sMHCI that inhibits neurite outgrowth from nearby neurons in vitro. The neuroinhibitory effect of sMHCI could be blocked by lowering cAMP levels, suggesting that the neuronal MHCI receptor's signaling mechanism involves a cyclic nucleotide-dependent pathway. Our results suggest that MHCI may not only have neurobiological activity in its membrane-bound form, it may also influence local neurons as a soluble molecule. We discuss the involvement of complement proteins in generating sMHCI and new theoretical models of MHCI's biological activities in the nervous system
    • …
    corecore