27 research outputs found

    Quantum belief function

    Full text link
    The belief function in Dempster Shafer evidence theory can express more information than the traditional Bayesian distribution. It is widely used in approximate reasoning, decision-making and information fusion. However, its power exponential explosion characteristics leads to the extremely high computational complexity when handling large amounts of elements in classic computers. In order to solve the problem, we encode the basic belief assignment (BBA) into quantum states, which makes each qubit correspond to control an element. Besides the high efficiency, this quantum expression is very conducive to measure the similarity between two BBAs, and the measuring quantum algorithm we come up with has exponential acceleration theoretically compared to the corresponding classical algorithm. In addition, we simulate our quantum version of BBA on Qiskit platform, which ensures the rationality of our algorithm experimentally. We believe our results will shed some light on utilizing the characteristic of quantum computation to handle belief function more conveniently

    QAOA with fewer qubits: a coupling framework to solve larger-scale Max-Cut problem

    Full text link
    Maximum cut (Max-Cut) problem is one of the most important combinatorial optimization problems because of its various applications in real life, and recently Quantum Approximate Optimization Algorithm (QAOA) has been widely employed to solve it. However, as the size of the problem increases, the number of qubits required will become larger. With the aim of saving qubits, we propose a coupling framework for designing QAOA circuits to solve larger-scale Max-Cut problem. This framework relies on a classical algorithm that approximately solves a certain variant of Max-Cut, and we derive an approximation guarantee theoretically, assuming the approximation ratio of the classical algorithm and QAOA. Furthermore we design a heuristic approach that fits in our framework and perform sufficient numerical experiments, where we solve Max-Cut on various 2424-vertex Erd\H{o}s-R\'enyi graphs. Our framework only consumes 1818 qubits and achieves 0.99500.9950 approximation ratio on average, which outperforms the previous methods showing 0.97780.9778 (quantum algorithm using the same number of qubits) and 0.96430.9643 (classical algorithm). The experimental results indicate our well-designed quantum-classical coupling framework gives satisfactory approximation ratio while reduces the qubit cost, which sheds light on more potential computing power of NISQ devices

    Optimization of CNOT circuits on topological superconducting processors

    Full text link
    We focus on optimization of the depth/size of CNOT circuits under topological connectivity constraints. We prove that any nn-qubit CNOT circuit can be paralleled to O(n)O(n) depth with n2n^2 ancillas for 22-dimensional grid structure. For the high dimensional grid topological structure in which every quibit connects to 2logn2\log n other qubits, we achieves the asymptotically optimal depth O(logn)O(\log n) with only n2n^2 ancillas. We also consider the synthesis without ancillas. We propose an algorithm uses at most 2n22n^2 CNOT gates for arbitrary connected graph, considerably better than previous works. Experiments also confirmed the performance of our algorithm. We also designed an algorithm for dense graph, which is asymptotically optimal for regular graph. All these results can be applied to stabilizer circuits

    A Neutrosophic Approach Based on TOPSIS Method to Image Segmentation

    Get PDF
    Neutrosophic set (NS) is a formal framework proposed recently. NS can not only describe the incomplete information in the decision-making system but also depict the uncertainty and inconsistency, so it has applied successfully in several fields such as risk assessment, fuzzy decision and image segmentation. In this paper, a new neutrosophic approach based on TOPSIS method, which can make full use of NS information, is proposed to separate the graphics. Firstly, the image is transformed into the NS domain. Then, two operations, a modified alpha-mean and the beta-enhancement operations are used to enhance image edges and to reduce uncertainty. At last, the segmentation is achieved by the TOPSIS method and the modified fuzzy c-means (FCM). Simulated images and real images are illustrated that the proposed method is more effective and accurate in image segmentation

    Near-Term Quantum Computing Techniques: Variational Quantum Algorithms, Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation

    Full text link
    Quantum computing is a game-changing technology for global academia, research centers and industries including computational science, mathematics, finance, pharmaceutical, materials science, chemistry and cryptography. Although it has seen a major boost in the last decade, we are still a long way from reaching the maturity of a full-fledged quantum computer. That said, we will be in the Noisy-Intermediate Scale Quantum (NISQ) era for a long time, working on dozens or even thousands of qubits quantum computing systems. An outstanding challenge, then, is to come up with an application that can reliably carry out a nontrivial task of interest on the near-term quantum devices with non-negligible quantum noise. To address this challenge, several near-term quantum computing techniques, including variational quantum algorithms, error mitigation, quantum circuit compilation and benchmarking protocols, have been proposed to characterize and mitigate errors, and to implement algorithms with a certain resistance to noise, so as to enhance the capabilities of near-term quantum devices and explore the boundaries of their ability to realize useful applications. Besides, the development of near-term quantum devices is inseparable from the efficient classical simulation, which plays a vital role in quantum algorithm design and verification, error-tolerant verification and other applications. This review will provide a thorough introduction of these near-term quantum computing techniques, report on their progress, and finally discuss the future prospect of these techniques, which we hope will motivate researchers to undertake additional studies in this field.Comment: Please feel free to email He-Liang Huang with any comments, questions, suggestions or concern
    corecore