1,572 research outputs found
A genome-wide association study identifies four novel susceptibility loci underlying inguinal hernia.
Inguinal hernia repair is one of the most commonly performed operations in the world, yet little is known about the genetic mechanisms that predispose individuals to develop inguinal hernias. We perform a genome-wide association analysis of surgically confirmed inguinal hernias in 72,805 subjects (5,295 cases and 67,510 controls) and confirm top associations in an independent cohort of 92,444 subjects with self-reported hernia repair surgeries (9,701 cases and 82,743 controls). We identify four novel inguinal hernia susceptibility loci in the regions of EFEMP1, WT1, EBF2 and ADAMTS6. Moreover, we observe expression of all four genes in mouse connective tissue and network analyses show an important role for two of these genes (EFEMP1 and WT1) in connective tissue maintenance/homoeostasis. Our findings provide insight into the aetiology of hernia development and highlight genetic pathways for studies of hernia development and its treatment
A distributed position-based protocol for emergency messages broadcasting in vehicular ad hoc networks
Vehicular ad hoc networks (VANETs) can help reduce traffic accidents through broadcasting emergency messages among vehicles in advance. However, it is a great challenge to timely deliver the emergency messages to the right vehicles which are interested in them. Some protocols require to collect nearby real-time information before broadcasting a message, which may result in an increased delivery latency. In this paper, we proposed an improved position-based protocol to disseminate emergency messages among a large scale vehicle networks. Specifically, defined by the proposed protocol, messages are only broadcasted along their regions of interest, and a rebroadcast of a message depends on the information including in the message it has received. The simulation results demonstrate that the proposed protocol can reduce unnecessary rebroadcasts considerably, and the collisions of broadcast can be effectively mitigated
Combining Electrochemical Nitrate Reduction and Anammox for Treatment of Nitrate-Rich Wastewater: A Short Review
Treatment of nitrate-rich wastewater is important but challenging for the conventional biological denitrification process. Here, we propose combining the electrochemical reduction and anaerobic ammonium oxidation (anammox) processes together for treatment of nitrate-rich wastewater. This article reviews the mechanism and current research status of electrochemical reduction of nitrate to ammonium as well as the mechanism and applicability of the anammox process. This article discusses the principles, superiorities, and challenges of this combined process. The feasibility of the combined process depends on the efficiency of electrochemical nitrate reduction to ammonium and the conditions in the anammox process to use the reduced ammonium as the substrate to achieve deep nitrogen removal. The article provides a feasible strategy for using the electrochemical reduction and anammox combined process to treat nitrate-rich wastewater
Snyder's Quantized Space-time and De Sitter Special Relativity
There is a one-to-one correspondence between Snyder's model in de Sitter
space of momenta and the \dS-invariant special relativity. This indicates that
physics at the Planck length and the scale should be
dual to each other and there is in-between gravity of local \dS-invariance
characterized by a dimensionless coupling constant .Comment: 8 page
Coherent electron-phonon coupling and polaron-like transport in molecular wires
We present a technique to calculate the transport properties through
one-dimensional models of molecular wires. The calculations include inelastic
electron scattering due to electron-lattice interaction. The coupling between
the electron and the lattice is crucial to determine the transport properties
in one-dimensional systems subject to Peierls transition since it drives the
transition itself. The electron-phonon coupling is treated as a quantum
coherent process, in the sense that no random dephasing due to electron-phonon
interactions is introduced in the scattering wave functions. We show that
charge carrier injection, even in the tunneling regime, induces lattice
distortions localized around the tunneling electron. The transport in the
molecular wire is due to polaron-like propagation. We show typical examples of
the lattice distortions induced by charge injection into the wire. In the
tunneling regime, the electron transmission is strongly enhanced in comparison
with the case of elastic scattering through the undistorted molecular wire. We
also show that although lattice fluctuations modify the electron transmission
through the wire, the modifications are qualitatively different from those
obtained by the quantum electron-phonon inelastic scattering technique. Our
results should hold in principle for other one-dimensional atomic-scale wires
subject to Peierls transitions.Comment: 21 pages, 8 figures, accepted for publication in Phys. Rev. B (to
appear march 2001
Observation of eight-photon entanglement
Using ultra-bright sources of pure-state entangled photons from parametric
down conversion, an eight-photon interferometer and post-selection detection,
we demonstrate the ability to experimentally manipulate eight individual
photons and report the creation of an eight-photon Schr\"odinger cat state with
an observed fidelity of .Comment: 6 pages, 4 figure
Analysis of East Asia Genetic Substructure Using Genome-Wide SNP Arrays
Accounting for population genetic substructure is important in reducing type 1 errors in genetic studies of complex disease. As efforts to understand complex genetic disease are expanded to different continental populations the understanding of genetic substructure within these continents will be useful in design and execution of association tests. In this study, population differentiation (Fst) and Principal Components Analyses (PCA) are examined using >200 K genotypes from multiple populations of East Asian ancestry. The population groups included those from the Human Genome Diversity Panel [Cambodian, Yi, Daur, Mongolian, Lahu, Dai, Hezhen, Miaozu, Naxi, Oroqen, She, Tu, Tujia, Naxi, Xibo, and Yakut], HapMap [ Han Chinese (CHB) and Japanese (JPT)], and East Asian or East Asian American subjects of Vietnamese, Korean, Filipino and Chinese ancestry. Paired Fst (Wei and Cockerham) showed close relationships between CHB and several large East Asian population groups (CHB/Korean, 0.0019; CHB/JPT, 00651; CHB/Vietnamese, 0.0065) with larger separation with Filipino (CHB/Filipino, 0.014). Low levels of differentiation were also observed between Dai and Vietnamese (0.0045) and between Vietnamese and Cambodian (0.0062). Similarly, small Fst's were observed among different presumed Han Chinese populations originating in different regions of mainland of China and Taiwan (Fst's <0.0025 with CHB). For PCA, the first two PC's showed a pattern of relationships that closely followed the geographic distribution of the different East Asian populations. PCA showed substructure both between different East Asian groups and within the Han Chinese population. These studies have also identified a subset of East Asian substructure ancestry informative markers (EASTASAIMS) that may be useful for future complex genetic disease association studies in reducing type 1 errors and in identifying homogeneous groups that may increase the power of such studies
Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids
The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bound to an RNA/DNA hybrid reveals an extensive network of contacts with the phosphate backbone of the DNA strand ∼4–9 bp downstream from the ribonuclease H (RNase H) catalytic center. Collectively designated as ‘the RNase H primer grip’, this motif contains a phosphate binding pocket analogous to the human and Bacillus halodurans RNases H. The notion that the RNase H primer grip mediates the trajectory of RNA/DNA hybrids accessing the RNase H active site suggests that locally neutralizing the phosphate backbone may be exploited to manipulate nucleic acid flexibility. To examine this, we introduced single and tandem methylphosphonate substitutions through the region of the DNA primer contacted by the RNase H primer grip and into the RNase H catalytic center. The ability of mutant hybrids to support RNase H and DNA polymerase activity was thereafter examined. In addition, site-specific chemical footprinting was used to evaluate movement of the DNA polymerase and RNase H domains. We show here that minor alteration to the RNase H primer can have a dramatic effect on enzyme positioning, and discuss these findings in light of recent crystallography of human RNase H containing an RNA/DNA hybrid
Improved Constraints on D0-D0bar Mixing in D0 -> K+ pi- Decays from the Belle Detector
We report the results of a search for D0-D0bar mixing in D0 -> K+ pi- decays
based on 400 fb^{-1} of data accumulated by the Belle detector at KEKB. Both
assuming CP conservation and allowing for CP violation, we fit the decay-time
distribution for the mixing parameters x' and y', as well as for the parameter
R_D, the ratio of doubly-Cabibbo-suppressed decays to Cabibbo-favored decays.
The 95% confidence level region in the (x'^2,y') plane is obtained using a
frequentist method. Assuming CP conservation, we find x'^2<0.72 x 10^{-3} and
-9.9 x 10^{-3}<y'<6.8 x 10^{-3} at the 95% confidence level; these are the most
stringent constraints on the mixing parameters to date. The no-mixing point
(0,0) has a confidence level of 3.9%. Assuming no mixing, we measure
R_D=(0.377+-0.008+-0.005)%.Comment: 6 pages, 3 figures, 1 table; replaced with the version of Phys. Rev.
Let
- …