245 research outputs found
SIRT2 in age-related neurodegenerative disorders
Sirtuin 2 (SIRT2) is one of seven members of the NAD+-dependent histone deacetylases (HDAC) family of proteins. Sirtuins play diverse roles in cellular metabolism and the aging process. SIRT2 is located in the nucleus, cytoplasm, and mitochondria, is highly expressed in the central nervous system (CNS), and has been reported to regulate a variety of processes including oxidative stress, genome integrity, and myelination [1]
Smuggled. Film Screening
https://scholarworks.sjsu.edu/chc_flyers/1031/thumbnail.jp
Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain
Aging is associated with a progressive increase in the incidence of neurodegenerative diseases, with Alzheimer's (AD) and Parkinson's (PD) disease being the most conspicuous examples. Within this context, the absence of efficacious therapies for most age-related brain pathologies has increased the interest in regenerative medicine. In particular, cell reprogramming technologies have ushered in the era of personalized therapies that not only show a significant potential for the treatment of neurodegenerative diseases but also promise to make biological rejuvenation feasible. We will first review recent evidence supporting the emerging view that aging is a reversible epigenetic phenomenon. Next, we will describe novel reprogramming approaches that overcome some of the intrinsic limitations of conventional induced-pluripotent-stem-cell technology. One of the alternative approaches, lineage reprogramming, consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific transcription factors (TF). Another strategy, termed pluripotency factor-mediated direct reprogramming, uses universal TF to generate epigenetically unstable intermediates able to differentiate into somatic cell types in response to specific differentiation factors. In the third part we will review studies showing the potential relevance of the above approaches for the treatment of AD and PD.Fil: López León, Micaela. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Instituto de Investigaciones BioquÃmicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones BioquÃmicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Outeiro, Tiago F.. Max Planck Institute for Experimental Medicine; Alemania. University Medical Center Gottingen; AlemaniaFil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Instituto de Investigaciones BioquÃmicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones BioquÃmicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentin
Age-related alterations in efferent medial olivocochlear-outer hair cell and primary auditory ribbon synapses in CBA/J mice
IntroductionHearing decline stands as the most prevalent single sensory deficit associated with the aging process. Giving compelling evidence suggesting a protective effect associated with the efferent auditory system, the goal of our study was to characterize the age-related changes in the number of efferent medial olivocochlear (MOC) synapses regulating outer hair cell (OHC) activity compared with the number of afferent inner hair cell ribbon synapses in CBA/J mice over their lifespan.MethodsOrgans of Corti of 3-month-old CBA/J mice were compared with mice aged between 10 and 20 months, grouped at 2-month intervals. For each animal, one ear was used to characterize the synapses between the efferent MOC fibers and the outer hair cells (OHCs), while the contralateral ear was used to analyze the ribbon synapses between inner hair cells (IHCs) and type I afferent nerve fibers of spiral ganglion neurons (SGNs). Each cochlea was separated in apical, middle, and basal turns, respectively.ResultsThe first significant age-related decline in afferent IHC-SGN ribbon synapses was observed in the basal cochlear turn at 14 months, the middle turn at 16 months, and the apical turn at 18 months of age. In contrast, efferent MOC-OHC synapses in CBA/J mice exhibited a less pronounced loss due to aging which only became significant in the basal and middle turns of the cochlea by 20 months of age.DiscussionThis study illustrates an age-related reduction on efferent MOC innervation of OHCs in CBA/J mice starting at 20 months of age. Our findings indicate that the morphological decline of efferent MOC-OHC synapses due to aging occurs notably later than the decline observed in afferent IHC-SGN ribbon synapses
Integration of Single Cell Traps, Chemical Gradient Generator and Photosensors in a Microfluidic Platform for the Study of Alpha-Synuclein Toxicity in Yeast
AbstractAlpha-synuclein (aSyn) is a key player in Parkinson's disease. Genetically engineered yeast cells producing aSyn fused with GFP (aSyn-GFP) have been used to study this protein. In this work, we present a microfluidic platform with integrated photosensors that captures single yeast cells in arrays of hydrodynamic traps and exposes them to a chemical gradient of precise composition. This platform enables the study of the effects of aSyn expression level and aggregation in genetically modified yeast cells by chemical stimulation. The photosensors allow the detection of cells in the traps by measuring the variations in light transmission or of the fluorescence produced by aSyn-GFP for real-time signal acquisition
- …