5 research outputs found

    Reduced Expression of Dentin Sialophosphoprotein Is Associated with Dysplastic Dentin in Mice Overexpressing Transforming Growth Factor-β1 in Teeth

    Get PDF
    Transforming growth factor (TGF)-beta1 is expressed in developing tooth from the initiation stage through adulthood. Odontoblast-specific expression of TGF-beta1 in the tooth continues throughout life; however, the precise biological functions of this growth factor in the odontoblasts are not clearly understood. Herein, we describe the generation of transgenic mice that overexpress active TGF-beta1 predominantly in the odontoblasts. Teeth of these mice show a significant reduction in the tooth mineralization, defective dentin formation, and a relatively high branching of dentinal tubules. Dentin extracellular matrix components such as type I and III collagens are increased and deposited abnormally in the dental pulp, similar to the hereditary human tooth disorders such as dentin dysplasia and dentinogenesis imperfecta. Calcium, one of the crucial inorganic components of mineralization, is also apparently increased in the transgenic mouse teeth. Most importantly, the expression of dentin sialophosphoprotein (dspp), a candidate gene implicated in dentinogenesis imperfecta II (MIM 125420), is significantly down-regulated in the transgenic teeth. Our results provide in vivo evidence suggesting that TGF-beta1 mediated expression of dspp is crucial for dentin mineralization. These findings also provide for the first time a direct experimental evidence indicating that decreased dspp gene expression along with the other cellular changes in odontoblasts may result in human hereditary dental disorders like dentinogenesis imperfecta II (MIM 125420) and dentin dysplasia (MIM 125400 and 125420)

    The Receptor Activator of Nuclear Factor-κB Ligand-mediated Osteoclastogenic Pathway Is Elevated in Amelogenin-null Mice

    Get PDF
    Amelogenins, major components of developing enamel, are predominantly involved in the formation of tooth enamel. Although amelogenins are also implicated in cementogenesis, their precise spatial expression pattern and molecular role are not clearly understood. Here, we report for the first time the expression of two alternate splice forms of amelogenins, M180 and the leucine-rich amelogenin peptide (LRAP), in the periodontal region of mouse tooth roots. Lack of M180 and LRAP mRNA expression correlated with cementum defects observed in the amelogenin-null mice. The cementum defects were characterized by an increased presence of multinucleated cells, osteoclasts, and cementicles. These defects were associated with an increased expression of the receptor activator of the nuclear factor-kappa B ligand (RANKL), a critical regulator of osteoclastogenesis. These findings indicate that the amelogenin splice variants, M180 and LRAP, are critical in preventing abnormal resorption of cementum

    Dentin Sialophosphoprotein Knockout Mouse Teeth Display Widened Predentin Zone and Develop Defective Dentin Mineralization Similar to Human Dentinogenesis Imperfecta Type III

    Get PDF
    Dentin sialophosphoprotein (Dspp) is mainly expressed in teeth by the odontoblasts and preameloblasts. The Dspp mRNA is translated into a single protein, Dspp, and cleaved into two peptides, dentin sialoprotein and dentin phosphoprotein, that are localized within the dentin matrix. Recently, mutations in this gene were identified in human dentinogenesis imperfecta II (Online Mendelian Inheritance in Man (OMIM) accession number 125490) and in dentin dysplasia II (OMIM accession number 125420) syndromes. Herein, we report the generation of Dspp-null mice that develop tooth defects similar to human dentinogenesis imperfecta III with enlarged pulp chambers, increased width of predentin zone, hypomineralization, and pulp exposure. Electron microscopy revealed an irregular mineralization front and a lack of calcospherites coalescence in the dentin. Interestingly, the levels of biglycan and decorin, small leucine-rich proteoglycans, were increased in the widened predentin zone and in void spaces among the calcospherites in the dentin of null teeth. These enhanced levels correlate well with the defective regions in mineralization and further indicate that these molecules may adversely affect the dentin mineralization process by interfering with coalescence of calcospherites. Overall, our results identify a crucial role for Dspp in orchestrating the events essential during dentin mineralization, including potential regulation of proteoglycan levels

    Amelogenin-deficient Mice Display an Amelogenesis Imperfecta Phenotype

    Get PDF
    Dental enamel is the hardest tissue in the body and cannot be replaced or repaired, because the enamel secreting cells are lost at tooth eruption. X-linked amelogenesis imperfecta (MIM 301200), a phenotypically diverse hereditary disorder affecting enamel development, is caused by deletions or point mutations in the human X-chromosomal amelogenin gene. Although the precise functions of the amelogenin proteins in enamel formation are not well defined, these proteins constitute 90% of the enamel organic matrix. We have disrupted the amelogenin locus to generate amelogenin null mice, which display distinctly abnormal teeth as early as 2 weeks of age with chalky-white discoloration. Microradiography revealed broken tips of incisors and molars and scanning electron microscopy analysis indicated disorganized hypoplastic enamel. The amelogenin null phenotype reveals that the amelogenins are apparently not required for initiation of mineral crystal formation but rather for the organization of crystal pattern and regulation of enamel thickness. These null mice will be useful for understanding the functions of amelogenin proteins during enamel formation and for developing therapeutic approaches for treating this developmental defect that affects the enamel
    corecore