4 research outputs found

    Contrastive encoder pre-training-based clustered federated learning for heterogeneous data

    Full text link
    Federated learning (FL) is a promising approach that enables distributed clients to collaboratively train a global model while preserving their data privacy. However, FL often suffers from data heterogeneity problems, which can significantly affect its performance. To address this, clustered federated learning (CFL) has been proposed to construct personalized models for different client clusters. One effective client clustering strategy is to allow clients to choose their own local models from a model pool based on their performance. However, without pre-trained model parameters, such a strategy is prone to clustering failure, in which all clients choose the same model. Unfortunately, collecting a large amount of labeled data for pre-training can be costly and impractical in distributed environments. To overcome this challenge, we leverage self-supervised contrastive learning to exploit unlabeled data for the pre-training of FL systems. Together, self-supervised pre-training and client clustering can be crucial components for tackling the data heterogeneity issues of FL. Leveraging these two crucial strategies, we propose contrastive pre-training-based clustered federated learning (CP-CFL) to improve the model convergence and overall performance of FL systems. In this work, we demonstrate the effectiveness of CP-CFL through extensive experiments in heterogeneous FL settings, and present various interesting observations.Comment: Published in Neural Network

    Federated Learning with Intermediate Representation Regularization

    Full text link
    In contrast to centralized model training that involves data collection, federated learning (FL) enables remote clients to collaboratively train a model without exposing their private data. However, model performance usually degrades in FL due to the heterogeneous data generated by clients of diverse characteristics. One promising strategy to maintain good performance is by limiting the local training from drifting far away from the global model. Previous studies accomplish this by regularizing the distance between the representations learned by the local and global models. However, they only consider representations from the early layers of a model or the layer preceding the output layer. In this study, we introduce FedIntR, which provides a more fine-grained regularization by integrating the representations of intermediate layers into the local training process. Specifically, FedIntR computes a regularization term that encourages the closeness between the intermediate layer representations of the local and global models. Additionally, FedIntR automatically determines the contribution of each layer's representation to the regularization term based on the similarity between local and global representations. We conduct extensive experiments on various datasets to show that FedIntR can achieve equivalent or higher performance compared to the state-of-the-art approaches. Our code is available at https://github.com/YLTun/FedIntR.Comment: IEEE BigComp 202

    Federated Learning with Diffusion Models for Privacy-Sensitive Vision Tasks

    Full text link
    Diffusion models have shown great potential for vision-related tasks, particularly for image generation. However, their training is typically conducted in a centralized manner, relying on data collected from publicly available sources. This approach may not be feasible or practical in many domains, such as the medical field, which involves privacy concerns over data collection. Despite the challenges associated with privacy-sensitive data, such domains could still benefit from valuable vision services provided by diffusion models. Federated learning (FL) plays a crucial role in enabling decentralized model training without compromising data privacy. Instead of collecting data, an FL system gathers model parameters, effectively safeguarding the private data of different parties involved. This makes FL systems vital for managing decentralized learning tasks, especially in scenarios where privacy-sensitive data is distributed across a network of clients. Nonetheless, FL presents its own set of challenges due to its distributed nature and privacy-preserving properties. Therefore, in this study, we explore the FL strategy to train diffusion models, paving the way for the development of federated diffusion models. We conduct experiments on various FL scenarios, and our findings demonstrate that federated diffusion models have great potential to deliver vision services to privacy-sensitive domains

    FedMEKT: Distillation-based Embedding Knowledge Transfer for Multimodal Federated Learning

    Full text link
    Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works simply propose typical FL systems for single-modal data, thus limiting its potential on exploiting valuable multimodal data for future personalized applications. Furthermore, the majority of FL approaches still rely on the labeled data at the client side, which is limited in real-world applications due to the inability of self-annotation from users. In light of these limitations, we propose a novel multimodal FL framework that employs a semi-supervised learning approach to leverage the representations from different modalities. Bringing this concept into a system, we develop a distillation-based multimodal embedding knowledge transfer mechanism, namely FedMEKT, which allows the server and clients to exchange the joint knowledge of their learning models extracted from a small multimodal proxy dataset. Our FedMEKT iteratively updates the generalized global encoders with the joint embedding knowledge from the participating clients. Thereby, to address the modality discrepancy and labeled data constraint in existing FL systems, our proposed FedMEKT comprises local multimodal autoencoder learning, generalized multimodal autoencoder construction, and generalized classifier learning. Through extensive experiments on three multimodal human activity recognition datasets, we demonstrate that FedMEKT achieves superior global encoder performance on linear evaluation and guarantees user privacy for personal data and model parameters while demanding less communication cost than other baselines
    corecore