1,513 research outputs found

    Stability analysis of event-triggered anytime control with multiple control laws

    Full text link
    To deal with time-varying processor availability and lossy communication channels in embedded and networked control systems, one can employ an event-triggered sequence-based anytime control (E-SAC) algorithm. The main idea of E-SAC is, when computing resources and measurements are available, to compute a sequence of tentative control inputs and store them in a buffer for potential future use. State-dependent Random-time Drift (SRD) approach is often used to analyse and establish stability properties of such E-SAC algorithms. However, using SRD, the analysis quickly becomes combinatoric and hence difficult to extend to more sophisticated E-SAC. In this technical note, we develop a general model and a new stability analysis for E-SAC based on Markov jump systems. Using the new stability analysis, stochastic stability conditions of existing E-SAC are also recovered. In addition, the proposed technique systematically extends to a more sophisticated E-SAC scheme for which, until now, no analytical expression had been obtained.Comment: Accepted for publication in IEEE Transactions on Automatic Contro

    Ultrasound enhancement of microfiltration performance for natural organic matter removal

    Get PDF
    Sonication of water at 1500 W power prior to microfiltration showed that short sonication times (60 s) gave a reduced flux decline. It is suggested that a less potent, smaller molecular form of the natural organic matter (NOM) was produced by sonication. Longer sonication times diminished this beneficial effect. This may be due to the formation of aggregates or compounds that are more readily adsorbed on the membrane. Where the sonication was preceded by an alum treatment, the flux loss showed a regular decrease with longer sonication times. It is suggested that the effects of sonication on the alum flocs and on the flocs; NOM interactions may play a critical role in regulating the flux. Where sand was present on sonication at 800 and 1400 W, the cavitational energy was focussed on adsorbed organic material, resulting in more efficient destruction and the formation of compounds that counteracted the flux enhancement

    An experiment with RTEMS

    Get PDF
    The Real-Time Executive for Multiprocessor Systems (RTEMS) is an open source real-time executive used in many embedded systems. This report describes our effort to gain hands-on experience with RTEMS and provides instructions on how to build and use RTEMS in two different operating environments.Approved for public release; distribution is unlimited
    • …
    corecore