1,686 research outputs found
Reconstructing the global topology of the universe from the cosmic microwave background
If the universe is multiply-connected and sufficiently small, then the last
scattering surface wraps around the universe and intersects itself. Each circle
of intersection appears as two distinct circles on the microwave sky. The
present article shows how to use the matched circles to explicitly reconstruct
the global topology of space.Comment: 6 pages, 2 figures, IOP format. To be published in the proceedings of
the Cleveland Cosmology and Topology Workshop 17-19 Oct 1997. Submitted to
Class. Quant. Gra
Spherical structures on torus knots and links
The present paper considers two infinite families of cone-manifolds endowed
with spherical metric. The singular strata is either the torus knot or the torus link . Domains of existence for a
spherical metric are found in terms of cone angles and volume formul{\ae} are
presented.Comment: 17 pages, 5 figures; typo
Comments on Closed Bianchi Models
We show several kinematical properties that are intrinsic to the Bianchi
models with compact spatial sections. Especially, with spacelike hypersurfaces
being closed, (A) no anisotropic expansion is allowed for Bianchi type V and
VII(A\not=0), and (B) type IV and VI(A\not=0,1) does not exist. In order to
show them, we put into geometric terms what is meant by spatial homogeneity and
employ a mathematical result on 3-manifolds. We make clear the relation between
the Bianchi type symmetry of space-time and spatial compactness, some part of
which seem to be unnoticed in the literature. Especially, it is shown under
what conditions class B Bianchi models do not possess compact spatial sections.
Finally we briefly describe how this study is useful in investigating global
dynamics in (3+1)-dimensional gravity.Comment: 14 pages with one table, KUCP-5
Analyticity of the Susceptibility Function for Unimodal Markovian Maps of the Interval
In a previous note [Ru] the susceptibility function was analyzed for some
examples of maps of the interval. The purpose of the present note is to give a
concise treatment of the general unimodal Markovian case (assuming real
analytic). We hope that it will similarly be possible to analyze maps
satisfying the Collet-Eckmann condition. Eventually, as explained in [Ru],
application of a theorem of Whitney [Wh] should prove differentiability of the
map restricted to a suitable set.Comment: 8 page
Quantum creation of an Inhomogeneous universe
In this paper we study a class of inhomogeneous cosmological models which is
a modified version of what is usually called the Lema\^itre-Tolman model. We
assume that we have a space with 2-dimensional locally homogeneous spacelike
surfaces. In addition we assume they are compact. Classically we investigate
both homogeneous and inhomogeneous spacetimes which this model describe. For
instance one is a quotient of the AdS space which resembles the BTZ black
hole in AdS.
Due to the complexity of the model we indicate a simpler model which can be
quantized easily. This model still has the feature that it is in general
inhomogeneous. How this model could describe a spontaneous creation of a
universe through a tunneling event is emphasized.Comment: 21 pages, 5 ps figures, REVTeX, new subsection include
Exact Topological Quantum Order in D=3 and Beyond: Branyons and Brane-Net Condensates
We construct an exactly solvable Hamiltonian acting on a 3-dimensional
lattice of spin- systems that exhibits topological quantum order.
The ground state is a string-net and a membrane-net condensate. Excitations
appear in the form of quasiparticles and fluxes, as the boundaries of strings
and membranes, respectively. The degeneracy of the ground state depends upon
the homology of the 3-manifold. We generalize the system to , were
different topological phases may occur. The whole construction is based on
certain special complexes that we call colexes.Comment: Revtex4 file, color figures, minor correction
Measuring Topological Chaos
The orbits of fluid particles in two dimensions effectively act as
topological obstacles to material lines. A spacetime plot of the orbits of such
particles can be regarded as a braid whose properties reflect the underlying
dynamics. For a chaotic flow, the braid generated by the motion of three or
more fluid particles is computed. A ``braiding exponent'' is then defined to
characterize the complexity of the braid. This exponent is proportional to the
usual Lyapunov exponent of the flow, associated with separation of nearby
trajectories. Measuring chaos in this manner has several advantages, especially
from the experimental viewpoint, since neither nearby trajectories nor
derivatives of the velocity field are needed.Comment: 4 pages, 6 figures. RevTeX 4 with PSFrag macro
Complexity of links in 3-manifolds
We introduce a natural-valued complexity c(X) for pairs X=(M,L), where M is a
closed orientable 3-manifold and L is a link contained in M. The definition
employs simple spines, but for well-behaved X's we show that c(X) equals the
minimal number of tetrahedra in a triangulation of M containing L in its
1-skeleton. Slightly adapting Matveev's recent theory of roots for graphs, we
carefully analyze the behaviour of c under connected sum away from and along
the link. We show in particular that c is almost always additive, describing in
detail the circumstances under which it is not. To do so we introduce a certain
(0,2)-root for a pair X, we show that it is well-defined, and we prove that X
has the same complexity as its (0,2)-root. We then consider, for links in the
3-sphere, the relations of c with the crossing number and with the hyperbolic
volume of the exterior, establishing various upper and lower bounds. We also
specialize our analysis to certain infinite families of links, providing rather
accurate asymptotic estimates.Comment: 24 pages, 6 figure
Parabolic groups acting on one-dimensional compact spaces
Given a class of compact spaces, we ask which groups can be maximal parabolic
subgroups of a relatively hyperbolic group whose boundary is in the class. We
investigate the class of 1-dimensional connected boundaries. We get that any
non-torsion infinite f.g. group is a maximal parabolic subgroup of some
relatively hyperbolic group with connected one-dimensional boundary without
global cut point. For boundaries homeomorphic to a Sierpinski carpet or a
2-sphere, the only maximal parabolic subgroups allowed are virtual surface
groups (hyperbolic, or virtually ).Comment: 10 pages. Added a precision on local connectedness for Lemma 2.3,
thanks to B. Bowditc
Right-veering diffeomorphisms of compact surfaces with boundary II
We continue our study of the monoid of right-veering diffeomorphisms on a
compact oriented surface with nonempty boundary, introduced in [HKM2]. We
conduct a detailed study of the case when the surface is a punctured torus; in
particular, we exhibit the difference between the monoid of right-veering
diffeomorphisms and the monoid of products of positive Dehn twists, with the
help of the Rademacher function. We then generalize to the braid group B_n on n
strands by relating the signature and the Maslov index. Finally, we discuss the
symplectic fillability in the pseudo-Anosov case by comparing with the work of
Roberts [Ro1,Ro2].Comment: 25 pages, 5 figure
- …