1,686 research outputs found

    Reconstructing the global topology of the universe from the cosmic microwave background

    Get PDF
    If the universe is multiply-connected and sufficiently small, then the last scattering surface wraps around the universe and intersects itself. Each circle of intersection appears as two distinct circles on the microwave sky. The present article shows how to use the matched circles to explicitly reconstruct the global topology of space.Comment: 6 pages, 2 figures, IOP format. To be published in the proceedings of the Cleveland Cosmology and Topology Workshop 17-19 Oct 1997. Submitted to Class. Quant. Gra

    Spherical structures on torus knots and links

    Full text link
    The present paper considers two infinite families of cone-manifolds endowed with spherical metric. The singular strata is either the torus knot t(2n+1,2){\rm t}(2n+1, 2) or the torus link t(2n,2){\rm t}(2n, 2). Domains of existence for a spherical metric are found in terms of cone angles and volume formul{\ae} are presented.Comment: 17 pages, 5 figures; typo

    Comments on Closed Bianchi Models

    Get PDF
    We show several kinematical properties that are intrinsic to the Bianchi models with compact spatial sections. Especially, with spacelike hypersurfaces being closed, (A) no anisotropic expansion is allowed for Bianchi type V and VII(A\not=0), and (B) type IV and VI(A\not=0,1) does not exist. In order to show them, we put into geometric terms what is meant by spatial homogeneity and employ a mathematical result on 3-manifolds. We make clear the relation between the Bianchi type symmetry of space-time and spatial compactness, some part of which seem to be unnoticed in the literature. Especially, it is shown under what conditions class B Bianchi models do not possess compact spatial sections. Finally we briefly describe how this study is useful in investigating global dynamics in (3+1)-dimensional gravity.Comment: 14 pages with one table, KUCP-5

    Analyticity of the Susceptibility Function for Unimodal Markovian Maps of the Interval

    Full text link
    In a previous note [Ru] the susceptibility function was analyzed for some examples of maps of the interval. The purpose of the present note is to give a concise treatment of the general unimodal Markovian case (assuming ff real analytic). We hope that it will similarly be possible to analyze maps satisfying the Collet-Eckmann condition. Eventually, as explained in [Ru], application of a theorem of Whitney [Wh] should prove differentiability of the map fρff\mapsto\rho_f restricted to a suitable set.Comment: 8 page

    Quantum creation of an Inhomogeneous universe

    Get PDF
    In this paper we study a class of inhomogeneous cosmological models which is a modified version of what is usually called the Lema\^itre-Tolman model. We assume that we have a space with 2-dimensional locally homogeneous spacelike surfaces. In addition we assume they are compact. Classically we investigate both homogeneous and inhomogeneous spacetimes which this model describe. For instance one is a quotient of the AdS4_4 space which resembles the BTZ black hole in AdS3_3. Due to the complexity of the model we indicate a simpler model which can be quantized easily. This model still has the feature that it is in general inhomogeneous. How this model could describe a spontaneous creation of a universe through a tunneling event is emphasized.Comment: 21 pages, 5 ps figures, REVTeX, new subsection include

    Exact Topological Quantum Order in D=3 and Beyond: Branyons and Brane-Net Condensates

    Full text link
    We construct an exactly solvable Hamiltonian acting on a 3-dimensional lattice of spin-12\frac 1 2 systems that exhibits topological quantum order. The ground state is a string-net and a membrane-net condensate. Excitations appear in the form of quasiparticles and fluxes, as the boundaries of strings and membranes, respectively. The degeneracy of the ground state depends upon the homology of the 3-manifold. We generalize the system to D4D\geq 4, were different topological phases may occur. The whole construction is based on certain special complexes that we call colexes.Comment: Revtex4 file, color figures, minor correction

    Measuring Topological Chaos

    Full text link
    The orbits of fluid particles in two dimensions effectively act as topological obstacles to material lines. A spacetime plot of the orbits of such particles can be regarded as a braid whose properties reflect the underlying dynamics. For a chaotic flow, the braid generated by the motion of three or more fluid particles is computed. A ``braiding exponent'' is then defined to characterize the complexity of the braid. This exponent is proportional to the usual Lyapunov exponent of the flow, associated with separation of nearby trajectories. Measuring chaos in this manner has several advantages, especially from the experimental viewpoint, since neither nearby trajectories nor derivatives of the velocity field are needed.Comment: 4 pages, 6 figures. RevTeX 4 with PSFrag macro

    Complexity of links in 3-manifolds

    Full text link
    We introduce a natural-valued complexity c(X) for pairs X=(M,L), where M is a closed orientable 3-manifold and L is a link contained in M. The definition employs simple spines, but for well-behaved X's we show that c(X) equals the minimal number of tetrahedra in a triangulation of M containing L in its 1-skeleton. Slightly adapting Matveev's recent theory of roots for graphs, we carefully analyze the behaviour of c under connected sum away from and along the link. We show in particular that c is almost always additive, describing in detail the circumstances under which it is not. To do so we introduce a certain (0,2)-root for a pair X, we show that it is well-defined, and we prove that X has the same complexity as its (0,2)-root. We then consider, for links in the 3-sphere, the relations of c with the crossing number and with the hyperbolic volume of the exterior, establishing various upper and lower bounds. We also specialize our analysis to certain infinite families of links, providing rather accurate asymptotic estimates.Comment: 24 pages, 6 figure

    Parabolic groups acting on one-dimensional compact spaces

    Full text link
    Given a class of compact spaces, we ask which groups can be maximal parabolic subgroups of a relatively hyperbolic group whose boundary is in the class. We investigate the class of 1-dimensional connected boundaries. We get that any non-torsion infinite f.g. group is a maximal parabolic subgroup of some relatively hyperbolic group with connected one-dimensional boundary without global cut point. For boundaries homeomorphic to a Sierpinski carpet or a 2-sphere, the only maximal parabolic subgroups allowed are virtual surface groups (hyperbolic, or virtually Z+Z\mathbb{Z} + \mathbb{Z}).Comment: 10 pages. Added a precision on local connectedness for Lemma 2.3, thanks to B. Bowditc

    Right-veering diffeomorphisms of compact surfaces with boundary II

    Full text link
    We continue our study of the monoid of right-veering diffeomorphisms on a compact oriented surface with nonempty boundary, introduced in [HKM2]. We conduct a detailed study of the case when the surface is a punctured torus; in particular, we exhibit the difference between the monoid of right-veering diffeomorphisms and the monoid of products of positive Dehn twists, with the help of the Rademacher function. We then generalize to the braid group B_n on n strands by relating the signature and the Maslov index. Finally, we discuss the symplectic fillability in the pseudo-Anosov case by comparing with the work of Roberts [Ro1,Ro2].Comment: 25 pages, 5 figure
    corecore