862 research outputs found

    Statistical mechanical description of liquid systems in electric field

    Full text link
    We formulate the statistical mechanical description of liquid systems for both polarizable and polar systems in an electric field in the E\mathbf{E}-ensemble, which is the pendant to the thermodynamic description in terms of the free energy at constant potential. The contribution of the electric field to the configurational integral Q~N(E)\tilde{Q}_{N}(\mathbf{E}) in the E\mathbf{E}-ensemble is given in an exact form as a factor in the integrand of Q~N(E)\tilde{Q}_{N}(\mathbf{E}). We calculate the contribution of the electric field to the Ornstein-Zernike formula for the scattering function in the E\mathbf{E}-ensemble. As an application we determine the field induced shift of the critical temperature for polarizable and polar liquids, and show that the shift is upward for polarizable liquids and downward for polar liquids.Comment: 6 page

    Loop quantum gravity without the Hamiltonian constraint

    Full text link
    We show that under certain technical assumptions, including the existence of a constant mean curvature (CMC) slice and strict positivity of the scalar field, general relativity conformally coupled to a scalar field can be quantised on a partially reduced phase space, meaning reduced only with respect to the Hamiltonian constraint and a proper gauge fixing. More precisely, we introduce, in close analogy to shape dynamics, the generator of a local conformal transformation acting on both, the metric and the scalar field, which coincides with the CMC gauge condition. A new metric, which is invariant under this transformation, is constructed and used to define connection variables which can be quantised by standard loop quantum gravity methods. While it is hard to address dynamical problems in this framework (due to the complicated 'time' function), it seems, due to good accessibility properties of the CMC gauge, to be well suited for problems such as the computation of black hole entropy, where actual physical states can be counted and the dynamics is only of indirect importance. The corresponding calculation yields the surprising result that the usual prescription of fixing the Barbero-Immirzi parameter beta to a constant value in order to obtain the well-known formula S = a(Phi) A/(4G) does not work for the black holes under consideration, while a recently proposed prescription involving an analytic continuation of beta to the case of a self-dual space-time connection yields the correct result. Also, the interpretation of the geometric operators gets an interesting twist, which exemplifies the deep relationship between observables and the choice of a time function and has consequences for loop quantum cosmology.Comment: 8 pages. v2: Journal version. Black hole state counting based on physical states added. Applications to loop quantum cosmology discussed. Gauge condition used shown to coincide with CMC gauge. Minor clarifications. v3: Erroneous topology dependence of the entropy in journal version corrected, conclusions fixed accordingly. Main results unaffecte

    New Variables for Classical and Quantum Gravity in all Dimensions II. Lagrangian Analysis

    Full text link
    We rederive the results of our companion paper, for matching spacetime and internal signature, by applying in detail the Dirac algorithm to the Palatini action. While the constraint set of the Palatini action contains second class constraints, by an appeal to the method of gauge unfixing, we map the second class system to an equivalent first class system which turns out to be identical to the first class constraint system obtained via the extension of the ADM phase space performed in our companion paper. Central to our analysis is again the appropriate treatment of the simplicity constraint. Remarkably, the simplicity constraint invariant extension of the Hamiltonian constraint, that is a necessary step in the gauge unfixing procedure, involves a correction term which is precisely the one found in the companion paper and which makes sure that the Hamiltonian constraint derived from the Palatini Lagrangian coincides with the ADM Hamiltonian constraint when Gauss and simplicity constraints are satisfied. We therefore have rederived our new connection formulation of General Relativity from an independent starting point, thus confirming the consistency of this framework.Comment: 42 pages. v2: Journal version. Some nonessential sign errors in section 2 corrected. Minor clarification

    On a partially reduced phase space quantisation of general relativity conformally coupled to a scalar field

    Full text link
    The purpose of this paper is twofold: On the one hand, after a thorough review of the matter free case, we supplement the derivations in our companion paper on 'loop quantum gravity without the Hamiltonian constraint' with calculational details and extend the results to standard model matter, a cosmological constant, and non-compact spatial slices. On the other hand, we provide a discussion on the role of observables, focussed on the situation of a symmetry exchange, which is key to our derivation. Furthermore, we comment on the relation of our model to reduced phase space quantisations based on deparametrisation.Comment: 51 pages, 5 figures. v2: Gauge condition used shown to coincide with CMC gauge. Minor clarifications and correction

    Determination of the Michel Parameters rho, xi, and delta in tau-Lepton Decays with tau --> rho nu Tags

    Full text link
    Using the ARGUS detector at the e+ee^+ e^- storage ring DORIS II, we have measured the Michel parameters ρ\rho, ξ\xi, and ξδ\xi\delta for τ±l±ννˉ\tau^{\pm}\to l^{\pm} \nu\bar\nu decays in τ\tau-pair events produced at center of mass energies in the region of the Υ\Upsilon resonances. Using τρν\tau^\mp \to \rho^\mp \nu as spin analyzing tags, we find ρe=0.68±0.04±0.08\rho_{e}=0.68\pm 0.04 \pm 0.08, ξe=1.12±0.20±0.09\xi_{e}= 1.12 \pm 0.20 \pm 0.09, ξδe=0.57±0.14±0.07\xi\delta_{e}= 0.57 \pm 0.14 \pm 0.07, ρμ=0.69±0.06±0.08\rho_{\mu}= 0.69 \pm 0.06 \pm 0.08, ξμ=1.25±0.27±0.14\xi_{\mu}= 1.25 \pm 0.27 \pm 0.14 and ξδμ=0.72±0.18±0.10\xi\delta_{\mu}= 0.72 \pm 0.18 \pm 0.10. In addition, we report the combined ARGUS results on ρ\rho, ξ\xi, and ξδ\xi\delta using this work und previous measurements.Comment: 10 pages, well formatted postscript can be found at http://pktw06.phy.tu-dresden.de/iktp/pub/desy97-194.p

    Field-induced effects in the spin liquid candidate PbCuTe2_{2}O6_{6}

    Full text link
    PbCuTe2_2O6_6 is considered as one of the rare candidate materials for a three-dimensional quantum spin liquid (QSL). This assessment was based on the results of various magnetic experiments, performed mainly on polycrystalline material. More recent measurements on single crystals revealed an even more exotic behavior, yielding ferroelectric order below TFE1KT_{\text{FE}}\approx 1\,\text{K}, accompanied by distinct lattice distortions, and a somewhat modified magnetic response which is still consistent with a QSL. Here we report on low-temperature measurements of various thermodynamic, magnetic and dielectric properties of single crystalline PbCuTe2_2O6_6 in magnetic fields B14.5TB\leq 14.5\,\text{T}. The combination of these various probes allows us to construct a detailed BB-TT phase diagram including a ferroelectric phase for BB \leq 8T8\,\text{T} and a BB-induced magnetic phase at BB \geq 11T11\,\text{T}. These phases are preceded by or coincide with a structural transition from a cubic high-temperature phase into a distorted non-cubic low-temperature state. The phase diagram discloses two quantum critical points (QCPs) in the accessible field range, a ferroelectric QCP at Bc1B_{c1} = 7.9T7.9\,\text{T} and a magnetic QCP at Bc2B_{c2} = 11T11\,\text{T}. Field-induced lattice distortions, observed in the state at T>T> 1K1\,\text{K} and which are assigned to the effect of spin-orbit interaction of the Cu2+^{2+}-ions, are considered as the key mechanism by which the magnetic field couples to the dielectric degrees of freedom in this material

    Coherent X-ray Scattering from Manganite Charge and Orbital Domains

    Full text link
    We report coherent x-ray scattering studies of charge and orbital domains in manganite systems. The experiments were carried out on LaMnO_3 and Pr_{0.6}Ca_{0.4}MnO_3, with the incident photon energy tuned near the Mn K edge. At room temperature, the orbital speckle pattern of LaMnO_3 was observed to be constant over a timescale of at least minutes, which is indicative of static orbital domains on this timescale. For Pr_{0.6}Ca_{0.4}MnO_3, both charge and orbital speckle patterns were observed. The observation of the latter rules out the presence of fast orbital fluctuations, while long time series data-- on the order of several minutes-- were suggestive of slow dynamic behavior. In contrast, the charge order speckle patterns were static.Comment: 6 pages, 4 figure

    Interfaces in Diblocks: A Study of Miktoarm Star Copolymers

    Full text link
    We study ABn_n miktoarm star block copolymers in the strong segregation limit, focussing on the role that the AB interface plays in determining the phase behavior. We develop an extension of the kinked-path approach which allows us to explore the energetic dependence on interfacial shape. We consider a one-parameter family of interfaces to study the columnar to lamellar transition in asymmetric stars. We compare with recent experimental results. We discuss the stability of the A15 lattice of sphere-like micelles in the context of interfacial energy minimization. We corroborate our theory by implementing a numerically exact self-consistent field theory to probe the phase diagram and the shape of the AB interface.Comment: 12 pages, 11 included figure

    Spin liquid and ferroelectricity close to a quantum critical point in PbCuTe2O6

    Get PDF
    Geometrical frustration among interacting spins combined with strong quantum fluctuations destabilize long-range magnetic order in favour of more exotic states such as spin liquids. By following this guiding principle, a number of spin liquid candidate systems were identified in quasi-two-dimensional (quasi-2D) systems. For 3D, however, the situation is less favourable as quantum fluctuations are reduced and competing states become more relevant. Here we report a comprehensive study of thermodynamic, magnetic and dielectric properties on single crystalline and pressed-powder samples of PbCuTe2_2O6_6, a candidate material for a 3D frustrated quantum spin liquid featuring a hyperkagome lattice. Whereas the low-temperature properties of the powder samples are consistent with the recently proposed quantum spin liquid state, an even more exotic behaviour is revealed for the single crystals. These crystals show ferroelectric order at TFE1KT_{\text{FE}} \approx 1\,\text{K}, accompanied by strong lattice distortions, and a modified magnetic response -- still consistent with a quantum spin liquid -- but with clear indications for quantum critical behaviour.Comment: 59 pages, 15 figures, This version of the article has been accepted for publication, after peer review but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available onlin

    Intimal and medial arterial changes defined by ultra-high-frequency ultrasound: Response to changing risk factors in children with chronic kidney disease

    Get PDF
    BACKGROUND: Patients with chronic kidney disease (CKD) are exposed to both traditional 'Framingham' and uremia related cardiovascular risk factors that drive atherosclerotic and arteriosclerotic disease, but these cannot be differentiated using conventional ultrasound. We used ultra-high-frequency ultrasound (UHFUS) to differentiate medial thickness (MT) from intimal thickness (IT) in CKD patients, identify their determinants and monitor their progression. METHODS: Fifty-four children and adolescents with CKD and 12 healthy controls underwent UHFUS measurements using 55-70MHz transducers in common carotid and dorsal pedal arteries. Annual follow-up imaging was performed in 31 patients. RESULTS: CKD patients had higher carotid MT and dorsal pedal IT and MT compared to controls. The carotid MT in CKD correlated with serum phosphate (p<0.001, r = 0.42), PTH (p = 0.03, r = 0.36) and mean arterial pressure (p = 0.03, r = 0.34). Following multivariable analysis, being on dialysis, serum phosphate levels and mean arterial pressure remained the only independent predictors of carotid MT (R2 64%). Transplanted children had lower carotid and dorsal pedal MT compared to CKD and dialysis patients (p = 0.02 and p = 0.01 respectively). At 1-year follow-up, transplanted children had a decrease in carotid MT (p = 0.01), but an increase in dorsal pedal IT (p = 0.04) that independently correlated with annualized change in BMI. CONCLUSIONS: Using UHFUS, we have shown that CKD is associated with exclusively medial arterial changes that attenuate when the uremic milieu is ameliorated after transplantation. In contrast, after transplantation intimal disease develops as hypertension and obesity become prevalent, representing rapid vascular remodeling in response to a changing cardiovascular risk factor profile
    corecore